Geometry of Crystallographic Groups

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Crystallographic groups are groups which act in a nice way and via isometries on some n-dimensional Euclidean space. They got their name, because in three dimensions they occur as the symmetry groups of a crystal (which we imagine to extend to infinity in all directions). The book is divided into two parts. In the first part, the basic theory of crystallographic groups is developed from the very beginning, while in the second part, more advanced and more recent topics are discussed. So the first part of the book should be usable as a textbook, while the second part is more interesting to researchers in the field. There are short introductions to the theme before every chapter. At the end of this book is a list of conjectures and open problems. Moreover there are three appendices. The last one gives an example of the torsion free crystallographic group with a trivial center and a trivial outer automorphism group. This volume omits topics about generalization of crystallographic groups to nilpotent or solvable world and classical crystallography. We want to emphasize that most theorems and facts presented in the second part are from the last two decades. This is after the book of L Charlap “Bieberbach groups and flat manifolds” was published.

Author(s): Andrzej Szczepański
Series: Algebra and Discrete Mathematics Volume 4
Publisher: World Scientific
Year: 2012

Language: English
Pages: 200

0. FRONT MATTER

Definitions

Bieberbach Theorems

Classification Methods

Flat Manifolds with b1 = 0

Outer Automorphism Groups

Spin Structures and Dirac Operator

Flat Manifolds with Complex Structures

Crystallographic Groups as Isometries of ℍn

Hantzsche-Wendt Groups

Open Problems

BACK MATTER