Author(s): Herbert Edelsbrunner
Series: Cambridge Monographs on Applied and Computational Mathematics
Edition: 1
Publisher: Cambridge University Press
Year: 2001
Language: English
Pages: 190
Tags: Математика;Вычислительная математика;
Cover......Page 1
About......Page 2
CAMBRIDGE MONOGRAPHS ON APPLIED AND COMPUTATIONAL MATHEMATICS 6......Page 4
Geometry and Topology for Mesh Generation......Page 6
Copyright - ISBN: 052168207X......Page 7
Contents......Page 10
Preface......Page 12
1.1 Voronoi and Delaunay......Page 14
1.2 Edge flipping......Page 20
1.3 Randomized construction......Page 26
1.4 Symbolic perturbation......Page 31
Exercise collection......Page 36
2.1 Constrained triangulations......Page 39
2.2 Delaunay refinement......Page 44
2.3 Analysis......Page 49
Exercise collection......Page 55
3.1 Simplicial complexes......Page 57
3.2 Subdivision......Page 63
3.3 Topological spaces......Page 68
3.4 Euler characteristic......Page 73
Exercise collection......Page 79
4.1 Edge contraction algorithm......Page 81
4.2 Preserving topology......Page 86
4.3 Simplicial maps......Page 92
4.4 Error measure......Page 95
Exercise collection......Page 100
5.1 Lifting and polarity......Page 102
5.2 Weighted distance......Page 108
5.3 Flipping......Page 113
5.4 Incremental algorithm......Page 117
Exercise collection......Page 121
6.1 Meshing polyhedra......Page 124
6.2 Tetrahedral shape......Page 130
6.3 Delaunay refinement......Page 135
6.4 Sliver exudation......Page 140
Exercise collection......Page 146
P.1 Empty convex hexagons......Page 149
P.2 Unit distances in the plane......Page 151
P.3 Convex unit distances......Page 152
P.4 Bichromatic minimum distances......Page 153
P.5 MinMax area triangulation......Page 155
P.6 Counting triangulations......Page 156
P.7 Sorting X + Y......Page 158
P.8 Union of disks......Page 160
P.9 Intersection of disks......Page 163
P.10 Space-filling tetrahedra......Page 164
P.11 Connecting contours......Page 166
P.12 Shellability of 3-balls......Page 168
P.13 Counting halving edges......Page 169
P.14 Counting crossing triangles......Page 171
P.15 Collinear points......Page 173
P.16 Developing polytopes......Page 175
P.17 Inverting unfoldings......Page 176
P.18 Flip graph connectivity......Page 177
P.19 Average size tetrahedrization......Page 179
P.20 Equipartition in four dimensions......Page 180
P.21 Embedding in space......Page 182
P.22 Conforming tetrahedrization......Page 183
P.23 Hexahedral mesh size......Page 184
Subject Index......Page 186
Author Index......Page 188