Geometric Asymptotics for Nonlinear PDE I

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The study of asymptotic solutions to nonlinear systems of partial differential equations is a very powerful tool in the analysis of such systems and their applications in physics, mechanics, and engineering. In the present book, the authors propose a new powerful method of asymptotic analysis of solutions, which can be successfully applied in the case of the so-called ""smoothed shock waves"", i.e., nonlinear waves which vary fast in a neighborhood of the front and slowly outside of this neighborhood. The proposed method, based on the study of geometric objects associated to the front, can be viewed as a generalization of the geometric optics (or WKB) method for linear equations. This volume offers to a broad audience a simple and accessible presentation of this new method. The authors present many examples originating from problems of hydrodynamics, nonlinear optics, plasma physics, mechanics of continuum, and theory of phase transitions (problems of free boundary). In the examples, characterized by smoothing of singularities due to dispersion or diffusion, asymptotic solutions in the form of distorted solitons, kinks, breathers, or smoothed shock waves are constructed. By a unified rule, a geometric picture is associated with each physical problem that allows for obtaining tractable asymptotic formulas and provides a geometric interpretation of the physical process. Included are many figures illustrating the various physical effects.

Author(s): V. P. Maslov, G. A. Omel’yanov
Series: Translations of Mathematical Monographs 202
Publisher: American Mathematical Society
Year: 2001

Language: English
Pages: 285
Tags: Differential Equations;Applied;Mathematics;Science & Math;Non-Euclidean Geometries;Geometry & Topology;Mathematics;Science & Math;Geometry;Mathematics;Science & Mathematics;New, Used & Rental Textbooks;Specialty Boutique