Geometric analysis and nonlinear PDEs

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This reference features papers from the Special Session of the American Mathematical Society Meeting held in 1990 at the University of North Texas, Denton - discussing and developing research on boundary value problems for nonlinear partial differential equations and related problems.;Written by more than 15 authorities in the field, Geometric Analysis and Nonlinear Partial Differential Equations: presents methods and results of the convex bodies and geometric inequalities theory and its applications to differential equations, geometry, and mathematical physics; details recent studies on Monge-Ampere equations, emphasizing geometric inequalities governing a priori estimates of solutions and existence theorems of the Dirichlet problem for convex generalized solutions and showing the proofs of all theorems; examines the generalization of the isoperimetric inequality for two-dimensional general convex surfaces whose integral Gaussian curvature is less than 2 pi; and contains open problems on the theory of surfaces with constant mean curvature.;Geometric Analysis and Nonlinear Partial Differential Equations is for mathematical analysts, geometers, pure and applied mathematicians, physicists, engineers, computer scientists, and upper-level undergraduate and graduate students in these disciplines.

Author(s): Ilya J. Bakelman
Series: Lecture Notes in Pure and Applied Mathematics
Edition: 1
Publisher: CRC Press
Year: 1993

Language: English
Pages: 317