Geology and Geochemistry of Molybdenum Deposits in the Qinling Orogen, P R China

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book is the first systematic treatise of available data and view-points obtained from geological and geochemical studies of the Mo deposits in Qinling Orogen, China. Qinling Orogen has a minimum reserve of 8.7 Mt Mo, ranking the largest molybdenum province both in China and the world. Incorporating all known Mo deposit types in the world, it presents extensive studies of Mo deposits of world-class and unusual types within tectonic settings. The Qinling Orogen was finally formed during continental collision between Yangtze and North China cratons, following the Triassic closure of the northernmost paleo-Tethys. It hosts 49 Mo deposits formed in seven mineralization events since 1850 Ma, with all the world-class deposits being formed during 160-105 Ma, coeval with collisional orogeny. These deposits are assigned to magmatic and metamorphic hydrothermal classes. The magmatic hydrothermal class includes porphyries, skarns, and intrusion-related veins (carbonatite, fluorite and quartz). The porphyry Mo systems in Qinling Orogen are predominated by Dabie-type formed in continental collision setting, followed by Endako- and Climax-types formed in continental arcs and rifts, respectively. The metamorphic hydrothermal Mo deposits are only reported in Qinling Orogen, and thus a new crustal continuum model for the orogenic class mineral systems is proposed. A scientific linkage between ore geology and fluid inclusions is introduced and verified both by theory and case studies. This is the first research book comprehensively displaying continental collision metallogeny. This literature will benefit both Western and Chinese mineral explorers and miners, as well as research scientists and students.

Author(s): YanJing Chen, Franco Pirajno, Nuo Li, XiaoHua Deng, YongFei Yang
Series: Modern Approaches in Solid Earth Sciences, 22
Publisher: Springer
Year: 2021

Language: English
Pages: 853
City: Singapore

Preface
Contents
About the Editors
Chapter 1: Geological Evolution of Qinling Orogen
1.1 Introduction
1.1.1 Tectonic Location and Framework
1.1.2 Inventory of Main Ore Types and Commodities
1.2 Formation and Geology of Qinling Orogen
1.2.1 Outline
1.2.2 Formation and Geotectonic Evolution of the Qinling Orogen
1.2.2.1 Kenor and Nuna Supercontinents
1.2.2.2 Rodinia Supercontinent Assembly
1.2.2.3 Supercontinent Rodinia Breakup and Gondwana Assembly
1.2.2.4 Opening and Closure of Paleo-Tethys and Supercontinent Pangea Assembly
1.2.2.5 Continental Collision and Intracontinental Tectonism
1.2.3 Major Geologic Events in the Qinling Orogen
1.2.3.1 The ~3000 Ma Qingyanggou Orogeny
1.2.3.2 ~2550 Ma Shipaihe Orogeny
1.2.3.3 ~2300 Ma Great Oxidation Event or Guojiayao Orogeny
1.2.3.4 ~2050 Ma Songyang Orogeny
1.2.3.5 ~1850 Ma Zhongyue or Lüliang Orogeny
1.2.3.6 ~ 1600 Ma Xiaoxiong Orogeny
1.2.3.7 ~1000 Ma Jinning Orogeny
1.2.3.8 ~850 Ma Chengjiang Orogeny
1.2.3.9 The Transition from Proterozoic to Paleozoic: Shaolin Event
1.2.3.10 The Mid-Paleozoic (~430 Ma) Caledonian Orogeny
1.2.3.11 ~ 200 Ma Indosinian Orogeny
1.2.3.12 Yanshan Orogeny: Jurassic-Cretaceous Intracontinental Geotectonic Events
1.2.3.13 100 Ma Himalayan Orogeny
1.3 Basement Formation in Southern North China Craton
1.3.1 Multi-Terrane Structure of SNCC
1.3.2 Qingyanggou-Type Greenstone Belt and the Primitive Crust
1.3.3 Beizi-Type Greenstone Belt and Shipaihe Complex: Continental Nuclei
1.3.4 The Junzhao and Dangzehe Greenstone Belts
1.3.5 Rhyacian Stratigraphic Unit and the Divergence of Xiaoshan Terrane
1.3.6 Orosirian Stratigraphic Unit and Cratonization
1.4 Tectonic Setting of Xiong´er and Xiyanghe Groups: Application of Differentiation Index
1.4.1 Preamble
1.4.2 Tectonic Models of the Xiong'er and Xiyanghe Groups
1.4.2.1 Rift or Mantle Plume?
1.4.2.2 Continental or Island Arc?
1.4.2.3 Coexistence of Continental Arc and Passive Rift
1.4.3 Linking Igneous DI Population with Tectonic Settings
1.4.3.1 Igneous Differentiation Index (DI) as an Indicator of Tectonic Setting
1.4.3.2 Continental and Island Arcs
1.4.3.3 Continental and Oceanic Rifts
1.4.3.4 Continental Collision Orogens
1.4.3.5 Volcanic DI Histograms of Various Tectonic Settings
1.4.3.6 Magmatism in Various Tectonic Settings
1.4.4 Concluding Remarks
1.5 Triassic Tectonic Setting and Indosinian Orogeny
1.5.1 Sedimentation
1.5.1.1 Songpan Fold Belt
1.5.1.2 South Qinling Fold Belt
1.5.1.3 North Qinling Accretion Belt and Huaxiong Block
1.5.2 Magmatism
1.5.2.1 Lithologies and Spatial Distribution
1.5.2.2 Northward Geochemical Trend
1.5.2.3 Magmatic Evolution and Tectonic Implication
1.5.3 Metallogenesis
1.5.3.1 Triassic Hydrothermal Deposits
1.5.3.2 Spatio-Temporal Distribution and Tectonic Evolution
1.5.4 Concluding Remarks
1.6 Yanshanian Tectonism and Magmatism
1.6.1 Geology and Geochemistry of the Yanshanian Granitoids
1.6.2 Differences Between the Mid- and Late Yanshanian Granitoids
1.6.3 Tectonic Implications
1.6.4 Concluding Remarks
References
Chapter 2: Mo Mineralization Types, in Space and Time
2.1 Introduction
2.2 Trichotomy of Endogenic Processes
2.2.1 Epizonogenism and Trichotomy of Endogenic Processes
2.2.2 Comparison of Epizonogenism with Other Related Terms
2.2.2.1 Diagenesis
2.2.2.2 Epithermal or Low-Temperature Hydrothermal Process
2.2.2.3 Reworking Process
2.3 Three Classes of Hydrothermal Mineral Systems
2.3.1 Trichotomy of Hydrothermal Mineral Systems
2.3.2 Epizonogenic Hydrothermal Mineral System
2.3.3 Metamorphic-Hydrothermal Mineral System
2.3.4 Magmatic Hydrothermal Mineral Systems
2.4 Genetic Types of Mo Deposits in Qinling Orogen
2.5 Mineralization in Space and Time
2.5.1 Mineralization: Spatial Relationships
2.5.2 Mineralization: Temporal Relationships
References
Chapter 3: Porphyry Mo Deposits
3.1 Introduction
3.1.1 Classification of Porphyry Mo Deposits
3.1.2 Outline of Porphyry Mo Deposits in Qinling Orogen
3.2 The Jinduicheng Mo Deposit
3.2.1 Introduction
3.2.2 Regional Geology
3.2.3 Ore-Causative Porphyry
3.2.3.1 Geology
3.2.3.2 Major and Trace Elements Geochemistry
3.2.3.3 Geochronology
3.2.3.4 Isotope Geochemistry
3.2.3.5 Petrogenesis
3.2.4 Ore Geology
3.2.5 Fluid Inclusions
3.2.5.1 Types and Populations
3.2.5.2 Microthermometry
3.2.5.3 Trapping Pressure and Mineralization Depth
3.2.5.4 Laser Raman Spectroscopy Analysis
3.2.5.5 Mass Fluid Inclusions Analysis
3.2.5.6 Fluid Evolution and Mineralization
3.2.6 Ore Deposit Geochemistry
3.2.6.1 Trace Elements of the Ores
3.2.6.2 Carbon and Oxygen Isotope
3.2.6.3 Hydrogen and Oxygen Isotope
3.2.6.4 Sulfur Isotope
3.2.6.5 Lead Isotope
3.2.6.6 Helium and Argon Isotope
3.2.7 Timing of Mineralization
3.2.8 Concluding Remarks
3.3 The Donggou Mo Deposit
3.3.1 Introduction
3.3.2 Local Geology
3.3.3 Donggou Granite Porphyry
3.3.3.1 Geology
3.3.3.2 Element Geochemistry
3.3.3.3 Isotopic Geochronology
3.3.3.4 Isotope Geochemistry
3.3.3.5 Petrogenesis
3.3.4 Ore Geology
3.3.5 Fluid Inclusions
3.3.5.1 Types and Populations of Fluid Inclusions
3.3.5.2 Microthermometry
Trapping Pressure and Mineralization Depth
3.3.5.3 Fluid Evolution and Mineralization
Halite-Bearing Inclusions and Fluid Boiling
The Nature and Origin of the Initial Fluids
Evolution of Fluid System and Mineralization
3.3.6 Isotope Geochemistry
3.3.7 Timing of Mineralization
3.3.8 Concluding Remarks
3.4 The Yuchiling Mo Deposit
3.4.1 Introduction
3.4.2 Regional and Deposit Geology
3.4.3 Host and Ore-Causative Granitic Intrusions
3.4.3.1 Geology
3.4.3.2 Element Geochemistry
3.4.3.3 Geochronology
Zircon U-Pb Dating
Biotite 40Ar/39Ar dating
3.4.3.4 Isotopic Study
3.4.3.5 Source and Evolution of the Magmas
3.4.4 Alteration and Mineralization
3.4.4.1 Veins and Mineralization Stages
3.4.4.2 Hydrothermal Alteration
3.4.5 Fluid Inclusion Geochemistry
3.4.5.1 Types and Occurrence
3.4.5.2 Microthermometry
3.4.5.3 CO2 Contents and Mo Mineralization
3.4.5.4 Cationic Composition, Mo Contents and Mineralization
3.4.5.5 Fluid Immiscibility and Evolving P-T Conditions
3.4.6 Isotopic Geochemistry
3.4.6.1 Hydrogen and Oxygen Isotope
3.4.6.2 Sulfur Isotope
3.4.7 Timing of Mineralization
3.4.7.1 Molybdenite Re-Os Dating
3.4.7.2 Magma Emplacement and Mineralization
3.4.8 Discussion
3.4.8.1 Duration of Magmatic-Hydrothermal Activity
3.4.8.2 Zircon Eu/Eu* and Ce/Ce* Values: Tracers of Mineralization?
3.4.9 Concluding Remarks
3.5 The Leimengou Mo Deposit
3.5.1 Introduction
3.5.2 Regional and Deposit Geology
3.5.2.1 Regional Geology
3.5.2.2 Deposit Geology
3.5.3 The Ore-Causative Porphyry
3.5.3.1 Geology and Petrology
3.5.3.2 Element Geochemistry
3.5.3.3 Geochronology
3.5.4 Ore Geology
3.5.4.1 The Ore Bodies
3.5.4.2 Vein Systems
3.5.4.3 Hydrothermal Alteration
3.5.5 Fluid Inclusion Studies
3.5.5.1 Fluid Inclusion Types
3.5.5.2 Microthermometry
3.5.5.3 Fluid Composition
3.5.5.4 Nature and Evolution of the Ore-Forming Fluids
3.5.6 Isotope Studies
3.5.6.1 Hydrogen and Oxygen Isotope
3.5.6.2 Carbon and Oxygen Isotope
3.5.6.3 Sulfur Isotopes
3.5.7 Geochronology
3.5.8 Summary and Concluding Remarks
3.6 The Wenquan Mo Deposit
3.6.1 Introduction
3.6.2 Regional and Deposit Geology
3.6.3 The Ore-Causative Granite
3.6.3.1 Geology and Petrology
3.6.3.2 Element Geochemistry
3.6.3.3 Geochronology
3.6.3.4 Isotope Geochemistry
3.6.3.5 Petrogenesis
3.6.4 Alteration and Mineralization
3.6.4.1 Mineralization
3.6.4.2 Hydrothermal Alteration
3.6.4.3 Mineral Paragenesis
3.6.4.4 REE Analysis of Quartz and Calcite
3.6.5 Fluid Inclusions Studies
3.6.5.1 Fluid Inclusion Types and Occurrence
3.6.5.2 Microthermometry
3.6.5.3 Fluid Composition
3.6.6 Isotope Geochemistry
3.6.6.1 Carbon and Oxygen Isotope Systematics
3.6.6.2 Hydrogen and Oxygen Isotope Systematics
3.6.6.3 Sulfur Isotopes
3.6.6.4 Lead Isotopes
3.6.7 Timing of Mineralization
3.7 Concluding Remarks
References
Chapter 4: Porphyry-Skarn Mo Systems
4.1 Introduction
4.2 Nannihu-Sandaozhuang Mo-W Deposit
4.2.1 Introduction
4.2.2 Local Geology
4.2.3 The Ore-Causative Porphyry
4.2.3.1 Geology
4.2.3.2 Major and Trace Elements
4.2.3.3 Isotopic Study
Whole-Rock O Isotopic Studies
Sr Isotope Studies
Nd Isotope Studies
Pb Isotope Studies
4.2.3.4 Petrogenesis of the Nannihu Granites
4.2.4 Ore Geology
4.2.5 Fluid Inclusions
4.2.5.1 Fluid Inclusion Types
4.2.5.2 Microthermometry
4.2.5.3 Trapping Pressure and Mineralization Depth
4.2.5.4 Chemical Composition
4.2.5.5 Nature and Evolution of the Fluids
4.2.5.6 Hydrothermal Mineralization Process
4.2.6 Ore Geochemistry
4.2.6.1 Hydrogen and Oxygen Isotopes
4.2.6.2 Carbon and Oxygen Isotopes
4.2.6.3 Sulfur Isotopic Compositions
4.2.6.4 Lead Isotopic Compositions
4.2.7 Timing of the Mineralization
4.2.8 Concluding Remarks
4.3 The Shangfanggou Mo-Fe Deposit
4.3.1 Introduction
4.3.2 Regional and Local Geology
4.3.3 The Ore-Causative Granite Porphyry
4.3.3.1 Geology and Petrology
4.3.3.2 Element Geochemistry
4.3.3.3 Isotope Geochronology
4.3.3.4 Isotope Geochemistry
4.3.3.5 Genesis of the Shangfanggou Porphyry
4.3.4 Ore Geology
4.3.4.1 Features of Ore Bodies
4.3.4.2 Alteration and Mineralization Stage
4.3.5 Fluid Inclusions
4.3.5.1 Fluid Inclusion Types
4.3.5.2 Laser Raman Spectroscopy Analysis
4.3.5.3 Microthermometry
4.3.5.4 Trapping Pressure and Mineralization Depth
4.3.5.5 Nature and Evolution of the Fluids
4.3.6 Ore Geochemistry
4.3.6.1 Hydrogen, Oxygen and Carbon Isotope Systematics
4.3.6.2 Sulfur Isotopic Compositions
4.3.6.3 Lead Isotopic Compositions
4.3.7 Molybdenite Re-Os Chronology
4.3.8 Concluding Remarks
4.4 Qiushuwan Cu-Mo Deposit
4.4.1 Introduction
4.4.2 Regional and Local Geology
4.4.3 Ore-Causative Porphyry
4.4.3.1 Geology and Petrology
4.4.3.2 Major and Trace Elements
4.4.3.3 Geochronology
4.4.3.4 Isotope Geochemistry
4.4.3.5 Petrogenesis
4.4.4 Ore Geology
4.4.5 Fluid Inclusions
4.4.5.1 Types of Fluid Inclusions
4.4.5.2 Microthermometry
4.4.5.3 Fluid Inclusions Compositions
4.4.5.4 Fluid Evolution and Mineralization
4.4.6 Isotope Geochemistry
4.4.7 Timing of Mineralization
4.4.7.1 Molybdenite Re-Os Chronology
4.4.7.2 Whole Rock Re-Os Chronology
4.4.8 Discussion
4.4.8.1 Metal Transportation in Carbonic-Aqueous Fluids
4.4.8.2 The Source of the CH4-Rich Fluids
4.4.9 Concluding Remarks
4.5 The Yinjiagou Mo-Polymetal Deposit
4.5.1 Introduction
4.5.2 Regional and Local Geology
4.5.3 Ore-Causative Porphyry
4.5.3.1 Geology and Petrology
4.5.3.2 Major and Trace Elements
4.5.3.3 Geochronology
4.5.3.4 Isotope Geochemistry
4.5.3.5 Petrogenesis
4.5.4 Ore Geology
4.5.4.1 Ore Occurrence and Composition
4.5.4.2 Hydrothermal Alteration
4.5.4.3 Paragenesis
4.5.5 Fluid Inclusions
4.5.5.1 Fluid Inclusion Types
4.5.5.2 Microthermometric Data
4.5.5.3 Laser Raman Analysis
4.5.5.4 Nature and Evolution of the Ore-Forming Fluid
4.5.6 Ore Geochemistry
4.5.6.1 Hydrogen and Oxygen Isotopes Systematics
4.5.6.2 Helium and Argon Isotopes
4.5.6.3 Sulfur Isotopic Data
4.5.6.4 Lead Isotopes
4.5.6.5 Source of the Ore-Forming Fluids
4.5.6.6 The Source of Sulfur and Lead
4.5.7 Geochronology
4.5.7.1 Molybdenite and Pyrite Re-Os Dating
4.5.7.2 Sericite 40Ar/39Ar Dating
4.5.8 Concluding Remarks
References
Chapter 5: Magmatic-Hydrothermal Vein Systems
5.1 Introduction
5.2 Zhaiwa Quartz Vein Mo-Cu Deposit
5.2.1 Introduction
5.2.2 Regional Geology
5.2.3 Ore Geology
5.2.4 Fluid Inclusions
5.2.4.1 Fluid Inclusion Petrography
5.2.4.2 Microthermometry
5.2.4.3 Nature and Evolution of the Ore-Forming Fuids
5.2.5 Isotope Geochemistry
5.2.5.1 Oxygen and Hydrogen Isotope
5.2.5.2 Sulfur Isotopic Compositions
5.2.5.3 Sr Isotopic Compositions
5.2.5.4 Nd Isotopic Compositions
5.2.5.5 Pb Isotopic Compositions
5.2.6 Re-Os Geochronology
5.2.7 Discussion
5.2.7.1 Ore Genesis of the Zhaiwa Mo-Cu Deposit
5.2.7.2 Pre-Mesozoic Mo Mineralization and Enrichment
5.2.7.3 Tectonic Setting and Growth of the Columbia Supercontinent
5.2.8 Concluding Remarks
5.3 Tumen Molybdenite-Fluorite Vein System
5.3.1 Introduction
5.3.2 Regional Geology
5.3.3 Ore Geology
5.3.4 Fluid Inclusions
5.3.4.1 Fluid Inclusion Types and Assemblage
5.3.4.2 Microthermometry
5.3.4.3 Laser Raman Spectroscopy
5.3.5 Fluorite REY Geochemistry
5.3.5.1 Trace Elements of Fluorite
5.3.5.2 Variation in SigmaREE
5.3.5.3 REE Fractionation
5.3.5.4 Tb/Ca and Tb/La Ratios
5.3.5.5 Y-Ho Fractionation
5.3.5.6 Eu and Ce Anomalies
5.3.5.7 Source of REE and Fluids
5.3.6 Isotope Geochemistry
5.3.6.1 Sulfur Isotopes
5.3.6.2 Strontium Isotopes
5.3.6.3 Neodymium Isotopes
5.3.6.4 Lead Isotopes
5.3.7 Re-Os Geochronology
5.3.8 Discussion
5.3.8.1 Genesis and Genetic Type of the Tumen Deposit
5.3.8.2 Neoproterozoic Mo-Mineralization and Pre-Mesozoic Mo-Enrichment
5.3.8.3 Metallogenesis and Tectonic Setting
5.3.9 Conclusions
5.4 Huanglongpu Carbonatite-Hosted Mo Ore Field
5.4.1 Introduction
5.4.2 Geology of the Huanglongpu Mo Ore Field
5.4.3 Carbonatite Dykes
5.4.3.1 Geology of Carbonatite Dykes
5.4.3.2 Whole-Rock Geochemistry
5.4.3.3 Carbon-Oxygen Isotope Systematics
5.4.3.4 Sr-Nd-Pb Isotope Systematics
5.4.4 Ore Geology
5.4.5 Mineral Chemistry
5.4.6 Fluid Inclusion
5.4.6.1 Fluid Inclusion Types and Assemblage
5.4.6.2 Microthermometry
5.4.6.3 Laser Raman Microprobe (LRM) and Scanning Electron Microscopy/Energy Dispersive X-Ray Spectroscopy (SEM/EDS) Analysis
5.4.6.4 LA-ICPMS Analysis
5.4.7 Isotope Geochemistry
5.4.7.1 Sulfur
5.4.7.2 Sulfur Source in Carbonatites
5.4.8 Geochronology
5.4.9 Discussion
5.4.9.1 P-T (Pressure-Temperature) Conditions and Depth of Mineralization
5.4.9.2 Fluid Composition
5.4.9.3 HREE and Si Enrichment in Carbonatites
5.4.9.4 Mo Transportation and Enrichment in the Carbonatites
5.4.9.5 Tectonic Model for the Huanglongpu Mo Ore Field
5.4.10 Conclusions
References
Chapter 6: Metamorphic Hydrothermal (Orogenic-Type) Systems
6.1 Introduction
6.2 The Waifangshan Mo-Quartz Vein Cluster
6.2.1 Introduction
6.2.2 Regional Geology
6.2.3 Ore Geology of the Zhifang Deposit
6.2.4 Fluid Inclusions of the Zhifang Deposit
6.2.4.1 Fluid Inclusion Population
6.2.4.2 Microthermometry
6.2.4.3 Fluid Boiling, Evolution, and Mineralization
6.2.4.4 Mineralization Pressure and Depth
6.2.5 Isotope Geochemistry
6.2.5.1 Hydrogen and Oxygen Isotope Systematics
6.2.5.2 Sulfur Isotope Systematics
6.2.5.3 Strontium Isotope Systematics
6.2.5.4 Neodymium Isotope Systematics
6.2.5.5 Lead Isotope Systematics
6.2.6 Geochronology
6.2.6.1 Molybdenite Re-Os Ages
6.2.6.2 Re Contents in Molybdenites
6.2.7 Discussion: Ore Genesis and Tectonic Model
6.2.8 Concluding Remarks
6.3 The Dahu Au-Mo Deposit
6.3.1 Introduction
6.3.2 Geological Background
6.3.2.1 Regional Geology
6.3.2.2 Local Geology
6.3.3 Ore Geology
6.3.3.1 Orebodies
Au Orebodies
Mo Orebodies
6.3.3.2 Ore Mineralogy
Ore Minerals
Gangue Minerals
6.3.3.3 Paragenesis
6.3.3.4 Mineral Geochemistry
6.3.4 Fluid Inclusions
6.3.4.1 Fluid Inclusion Types
6.3.4.2 Microthermometry
6.3.4.3 Fluid Composition
6.3.4.4 Evolution of the Ore-Forming Fluids
6.3.4.5 Pressure Estimation and Implication
6.3.5 Isotope Geochemistry
6.3.5.1 H-O Isotope Systematics
6.3.5.2 Sulfur Isotope
6.3.5.3 Sr-Nd-Pb Isotope
6.3.6 Geochronology
6.3.6.1 Molybdenite Re-Os Dating
6.3.6.2 Monazite SHRIMP U-Th-Pb Dating
6.3.6.3 Zircon LA-ICP-MS U-Pb Dating on the Ores
6.3.6.4 SHRIMP Zircon U-Pb Dating on Lamprophyre
6.3.6.5 Timing of Mineralization at the Dahu Deposit
6.3.7 Discussion
6.3.7.1 Triassic Orogenic-Type Mo Mineralization
6.3.7.2 Yanshanian Orogenic-Type Au Mineralization
6.3.7.3 Evolution of Mineralization and Tectonism
6.3.8 Concluding Remarks
6.4 The Longmendian Mo Deposit
6.4.1 Introduction
6.4.2 Regional Geology
6.4.3 Deposit Geology
6.4.3.1 Ore-Hosting Migmatitic Rocks
Petrology
Mineral Geochemistry
Two-Feldspar Thermometer
6.4.3.2 Alteration and Mineralization
Ag Mineralization
Mo Mineralization
6.4.4 Fluid Inclusion
6.4.4.1 Fluid Inclusion Types
6.4.4.2 Microthermometry
6.4.4.3 Fluid Composition
6.4.4.4 Fluid Immiscibility and P-T Conditions
6.4.4.5 Fluid Features and Ore Genesis
6.4.5 Geochronology
6.4.5.1 Molybdenite and Pyrite Re-Os Dating
6.4.5.2 Zircon U-Pb Dating
6.4.5.3 Titanite U-Pb Age
6.4.5.4 Time Framework of the Longmendian Deposit
6.4.6 Discussion
6.4.6.1 Alteration of Mafic Minerals and Sulfide-Oxide Deposition
6.4.6.2 Genetic Type of the Longmendian Mo Deposit
6.4.6.3 Origin of Migmatite and Related Mo Mineralization
6.4.7 Concluding Remarks
References
Chapter 7: Mineralization and Its Controls
7.1 Spatial Distribution and Collisional Orogeny
7.1.1 Mo Mineralization and Crustal Thickness
7.1.2 Basement Control
7.1.3 Fault Control
7.2 Temporal Distribution and Orogenic Events
7.2.1 Mineralization Events and Orogenies
7.2.2 Timing Variation in Terms of Space
7.2.3 Timing Variation in Terms of Genetic Type
7.3 Host Rocks and Their Control on Mineralization
7.3.1 Age of Host Rocks
7.3.2 Lithology of Host Rocks
7.3.3 Physicochemical Feature of Host Rocks
7.3.4 Mo Contents of Host Rocks
7.4 The Ore-Causative Granitoids
7.4.1 Granitoids Aged 198-225 Ma
7.4.2 Granitoids Aged 133-158 Ma
7.4.3 Granitoids Aged 108-125 Ma
7.5 Hydrothermal Process and Mineralization
7.5.1 Metal Association and Zonation
7.5.2 Hydrothermal Alteration and Zonation
7.5.3 Four-Stage Hydrothermal Mineralization
7.6 The Ore-Forming Fluids
7.6.1 Nature of Ore-Forming Fluid and Its Tectonic Control
7.6.2 Relationship Between CO2 and Mo Enrichment
7.7 Re Contents of Molybdenite
7.8 Concluding Remarks
References