Genetics and Genomics of the Brassicaceae

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The Genetics and Genomics of the Brassicaceae provides a review of this important family (commonly termed the mustard family, or Cruciferae). The family contains several cultivated species, including radish, rocket, watercress, wasabi and horseradish, in addition to the vegetable and oil crops of the Brassica genus. There are numerous further species with great potential for exploitation in 21st century agriculture, particularly as sources of bioactive chemicals. These opportunities are reviewed, in the context of the Brassicaceae in agriculture. More detailed descriptions are provided of the genetics of the cultivated Brassica crops, including both the species producing most of the brassica vegetable crops (B. rapa and B. oleracea) and the principal species producing oilseed crops (B. napus and B. juncea). The Brassicaceae also include important “model” plant species. Most prominent is Arabidopsis thaliana, the first plant species to have its genome sequenced. Natural genetic variation is reviewed for A. thaliana, as are the genetics of the closely related A. lyrata and of the genus Capsella. Self incompatibility is widespread in the Brassicaceae, and this subject is reviewed. Interest arising from both the commercial value of crop species of the Brassicaceae and the importance of Arabidopsis thaliana as a model species, has led to the development of numerous resources to support research. These are reviewed, including germplasm and genomic library resources, and resources for reverse genetics, metabolomics, bioinformatics and transformation. Molecular studies of the genomes of species of the Brassicaceae revealed extensive genome duplication, indicative of multiple polyploidy events during evolution. In some species, such as Brassica napus, there is evidence of multiple rounds of polyploidy during its relatively recent evolution, thus the Brassicaceae represent an excellent model system for the study of the impacts of polyploidy and the subsequent process of diploidisation, whereby the genome stabilises. Sequence-level characterization of the genomes of Arabidopsis thaliana and Brassica rapa are presented, along with summaries of comparative studies conducted at both linkage map and sequence level, and analysis of the structural and functional evolution of resynthesised polyploids, along with a description of the phylogeny and karyotype evolution of the Brassicaceae. Finally, some perspectives of the editors are presented. These focus upon the Brassicaceae species as models for studying genome evolution following polyploidy, the impact of advances in genome sequencing technology, prospects for future transcriptome analysis and upcoming model systems. Professor Ian Bancroft completed his PhD at the University of Lancaster in 1986 and conducted his early postdoctoral research at Michigan State University, studying the genomes of cyanobacteria. He moved to the John Innes Centre in 1989 and has been expanding and applying his genomics expertise, initially in Arabidopsis thaliana, and since 1998 in the cultivated Brassica species. Renate Schmidt is leader of the group “Genome plasticity” at the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in Gatersleben (Germany). She was educated as a molecular geneticist, and her research interests center on comparative genome analysis in the Brassicaceae and transgene expression in plants.

Author(s): Martin A. Lysak, Marcus A. Koch (auth.), Renate Schmidt, Ian Bancroft (eds.)
Series: Plant Genetics and Genomics: Crops and Models 9
Edition: 1
Publisher: Springer-Verlag New York
Year: 2011

Language: English
Pages: 680
Tags: Plant Genetics & Genomics; Plant Sciences; Plant Physiology; Plant Breeding/Biotechnology

Front Matter....Pages i-xii
Phylogeny, Genome, and Karyotype Evolution of Crucifers (Brassicaceae)....Pages 1-31
Brassicaceae in Agriculture....Pages 33-65
The Non-coding Landscape of the Genome of Arabidopsis thaliana ....Pages 67-121
Natural Variation in Arabidopsis thaliana ....Pages 123-151
Chasing Ghosts: Comparative Mapping in the Brassicaceae....Pages 153-170
Comparative Genome Analysis at the Sequence Level in the Brassicaceae....Pages 171-194
Structural and Functional Evolution of Resynthesized Polyploids....Pages 195-214
Genetics of Brassica rapa L.....Pages 215-260
The Genetics of Brassica oleracea ....Pages 261-289
The Genetics of Brassica napus ....Pages 291-322
Genetics of Brassica juncea ....Pages 323-345
Arabidopsis lyrata Genetics....Pages 347-372
The Genetics of Capsella ....Pages 373-387
Self-Incompatibility in the Brassicaceae....Pages 389-411
Sequencing the Gene Space of Brassica rapa ....Pages 413-435
Germplasm and Molecular Resources....Pages 437-467
Resources for Metabolomics....Pages 469-503
Transformation Technology in the Brassicaceae....Pages 505-525
Resources for Reverse Genetics Approaches in Arabidopsis thaliana ....Pages 527-560
Resources for Reverse Genetics Approaches in Brassica Species....Pages 561-583
Bioinformatics Resources for Arabidopsis thaliana ....Pages 585-596
Bioinformatics Resources for the Brassica Species....Pages 597-615
Perspectives on Genetics and Genomics of the Brassicaceae....Pages 617-632
Back Matter....Pages 633-677