Generalized Curvatures (Geometry and Computing)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The intent of this book is to set the modern foundations of the theory of generalized curvature measures. This subject has a long history, beginning with J. Steiner (1850), H. Weyl (1939), H. Federer (1959), P. Wintgen (1982), and continues today with young and brilliant mathematicians. In the last decades, a renewal of interest in mathematics as well as computer science has arisen (finding new applications in computer graphics, medical imaging, computational geometry, visualization …). Following a historical and didactic approach, the book introduces the mathematical background of the subject, beginning with curves and surfaces, going on with convex subsets, smooth submanifolds, subsets of positive reach, polyhedra and triangulations, and ending with surface reconstruction. We focus on the theory of normal cycle, which allows to compute and approximate curvature measures of a large class of smooth or discrete objects of the Euclidean space. We give explicit computations when the object is a 2 or 3 dimensional polyhedron. This book can serve as a textbook to any mathematician or computer scientist, engineer or researcher who is interested in the theory of curvature measures.

Author(s): Jean-Marie Morvan
Series: Geometry and Computing
Edition: 1
Publisher: Springer
Year: 2008

Language: English
Pages: 266