Gauge fields in condensed matter

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Hagen Kleinert
Publisher: World Scientific Pub Co Inc
Year: 1990

Language: English
Pages: 732

Part III: Gauge Fields in solids ......Page 2
o Displacement and strain ......Page 4
o Elastic energy ......Page 5
o Stress ......Page 13
o External body forces ......Page 17
o Elastic Green function ......Page 21
o Two-dimensional elasticity ......Page 27
o Appendix 1A. The symmetry classes of the elastic matrix ......Page 31
o General remarks ......Page 36
o Dislocation lines and Burgers vector ......Page 41
o Disclinations and the Frank vector ......Page 46
o Interdependence of dislocations and disclinations ......Page 49
o Defect lines with infinitesimal discontinuities in continuous media ......Page 50
o Multivaluedness of the displacement field ......Page 51
o Smoothness properties of the displacement field and Weingarten's theorem ......Page 53
o Integrability considerations ......Page 57
o Dislocation and disclination densities ......Page 60
o Mnemonic procedures for constructing defect densities ......Page 63
o Branching defect lines ......Page 66
o Defect density and incompatibility ......Page 67
o Defects in two dimensions ......Page 73
o Strain and stress around dislocation lines ......Page 77
o Elastic interaction energy between two dislocation lines ......Page 84
o Elastic partition function ......Page 87
o Helicity decomposition of a vector field ......Page 89
o Helicity decomposition of a tensor field ......Page 94
o Helicity form of the magnetic energy ......Page 99
o Helicity form of the stress energy ......Page 101
o The two-dimensional case ......Page 109
o The symmetric stress gauge field ......Page 113
o Elastic partition function for a fixed general defect distribution ......Page 118
o Two-dimensional defects ......Page 121
o Glide ......Page 124
o Kinks ......Page 125
o General conservation motion ......Page 126
o Cross slip ......Page 127
o Dislocation sources ......Page 128
o Intersecting lines and jogs ......Page 130
o Basic energetic considerations of branching of dislocation lines ......Page 131
o Anchored branch points ......Page 133
* Some General Properties of the Melting Process ......Page 134
o Historical notes ......Page 135
o The Lindemann criterion ......Page 137
o Review of Debye's theory of specific heat ......Page 141
o Quantum corrections to the Lindemann parameter ......Page 152
o Classical melting ......Page 159
o Lattice expansion up to the melting transition ......Page 161
o Softening of elastic constants ......Page 172
o Two-dimensional crystals ......Page 183
o Appendix 7A. Some lattice properties ......Page 189
o Appendix 7B. Frequency distributions ......Page 191
* First Attempt at a Disordered Field Theory of Defect Melting ......Page 197
o Disorder fields of dislocation lines ......Page 198
o Fluctuation induced first-order transition ......Page 199
o Inclusion of stress and the Meissner effect ......Page 211
o Other possible mechanics to make a transition first order ......Page 217
o Disorder fields for disclination lines ......Page 220
o Setting up the model ......Page 230
o Defect representation of lattice model ......Page 235
o An XY type model of defect melting ......Page 258
o Appendix 9A. Derivation of defect energy (9.109) from stress energy (9.90) ......Page 267
* Defect Gauge Fields ......Page 272
o Gauge fixing ......Page 273
o Physical content of integer-valued defect gauge invariance ......Page 279
o Interaction energy between defect lines from the defect gauge field ......Page 284
o The defect model as an approximation to a first-principle N-body partition function ......Page 288
o High temperature expansion ......Page 293
o Low temperature expansion ......Page 307
o Appendix 11A. Calculation of the Green function ......Page 316
o Lowest order results for D=2 ......Page 335
o Lowest order results for D = 3 ......Page 337
o Stress and defect corrections in isotropic materials ......Page 339
o Anisotropic cubic materials ......Page 342
o Monte Carlo study of the melting model (Villain type) ......Page 346
* The Melting Model of the Cosine Type ......Page 372
o Inequality for free energy and the mean-field approximation ......Page 373
o Fluctuations around the mean-field solution ......Page 380
o One-loop correction to the mean-field energy ......Page 386
o High temperature expansion of the cosine melting model ......Page 391
o Pair corrections in the disordered phase ......Page 411
o Dissociation of dislocation pairs ......Page 421
o Renormalization group equations ......Page 426
o Triangular lattice ......Page 432
o Calculation of critical temperature ......Page 438
o The critical behavior of the coherence length ......Page 442
o Two-step melting ......Page 448
o Experimental evidences for and against a hexatic phase ......Page 449
o Comparison with molecular dynamics computer simulations ......Page 454
o Universal stiffness ......Page 457
o The Wigner electron lattice ......Page 461
o First order versus continuous KTHNY transitions ......Page 467
o Direct simulation of a gas of dislocations ......Page 471
o Disorder lattice model for three-dimensional defect configurations ......Page 477
o Coupling the stress gauge field ......Page 479
o Disorder field theory of interacting defects ......Page 481
o Defect densities on a lattice ......Page 484
o Interdependence of dislocations and disclinations ......Page 487
o Degenerate defect configurations in linear elasticity ......Page 490
o Extending the defect sum to the lattice ......Page 492
o Two-dimensional considerations ......Page 497
o Torque stresses ......Page 499
o General form of the elastic energy ......Page 501
o Canonical formalism for higher gradient theories ......Page 504
o Second-gradient elasticity ......Page 517
o Canonical formalism for second-gradient elasticity ......Page 521
o Elastic energy of plastic deformations ......Page 524
o Canonical form of the stress partition function ......Page 527
o Lattice model of defect melting with second-gradient elasticity ......Page 528
o Calculation of the interaction energy of defects via stress-gauge fields ......Page 533
o Second-gradient interaction energy derived from defect gauge fields ......Page 541
o Second-gradient elasticity and the partition function of two-dimensional defects ......Page 545
o Two successive melting transitions at large rotational stiffness ......Page 553
o Application of criterion to Lennard-Jones and Wigner lattices ......Page 564
o The partition function of general defect lines in three dimensions ......Page 578
o Cosine form of the partition function ......Page 580
o Disorder fields for dislocations and disclinations ......Page 581
o Towards a quantum defect dynamics of moving defects in two dimensions ......Page 584
Part IV Differential Geometry of Defects and Gravity with Torsion ......Page 590
* Introduction ......Page 592
o Gravity and Geometry ......Page 594
o Minkowski geometry formulated in general coordinates ......Page 597
o Torsion tensor ......Page 608
o Curvature tensor as a covariant curl of the connection ......Page 609
o Torsion and curvature from defects ......Page 615
o Differential geometric properties of metric-affine spaces with curvature and torsion ......Page 622
o Circuit integrals in metric-affine spaces with curvature and torsion ......Page 629
o Some examples of coordinate systems with defects ......Page 633
o Identities for curvature and torsion tensors ......Page 636
o Curvature from embedding ......Page 639
o Geodesic coordinates in curved space ......Page 641
o Invariant action ......Page 644
o Energy-momentum tensor and spin density ......Page 646
o Symmetric energy-momentum tensor of the gravitational field and defect density ......Page 654
o Local Lorentz invariance and non-holonomic coordinates ......Page 656
o Field equations with gravitational spinning matter ......Page 667
* Covariant Conservation Law ......Page 672
o Spin density ......Page 673
o Energy-momentum density ......Page 675
o Covariant derivation of conservation laws ......Page 679
o Matter with integer spin ......Page 680
o Relation between conservation laws and fundamental identities ......Page 684
o Local translations ......Page 686
o Local four-fermion interaction due to torsion ......Page 690
o Classical elasticity ......Page 694
o Second gradient elasticity ......Page 697
o Summing over defect configurations ......Page 700
* Summary and Outlook ......Page 702