An understandable perspective on the types of space propulsion systems necessary to enable low-cost space flights to Earth orbit and to the Moon and the future developments necessary for exploration of the solar system and beyond to the stars.
Author(s): Paul A. Czysz, Claudio Bruno
Edition: 2nd ed.
Year: 2009
Language: English
Pages: 574
Contents......Page 5
Color Plates......Page 569
Preface......Page 11
List of figures......Page 14
List of tables......Page 22
Introduction......Page 24
1.1 The challenge......Page 33
1.1.1 Historical developments......Page 34
1.2 The challenge of flying to space......Page 35
1.3 Operational requirements......Page 37
1.4 Operational space distances, speed, and times......Page 40
1.5 Implied propulsion performance......Page 45
1.6 Propulsion concepts available for Solar System exploration......Page 50
1.7 Bibliography......Page 56
2.1 Meeting the challenge......Page 57
2.2 Early progress in space......Page 58
2.3 Historical analogues......Page 63
2.4 Evolution of space launchers from ballistic missiles......Page 65
2.5 Conflicts between expendable rockets and reusable airbreathers......Page 74
2.6 Commercial near-Earth launchers enable the first step......Page 81
2.6.1 On-orbit operations in near-Earth orbit: a necessary second step......Page 85
2.6.3 The need for nuclear or high-energy space propulsion, to explore the Solar System......Page 87
2.7 Bibliography......Page 88
3. Commercial near-Earth space launcher: a perspective......Page 91
3.1 Energy, propellants, and propulsion requirements......Page 95
3.2 Energy requirements to change orbital altitude......Page 97
3.3 Operational concepts anticipated for future missions......Page 100
3.4 Configuration concepts......Page 102
3.5 Takeoff and landing mode......Page 115
3.6 Available solution space......Page 119
3.7 Bibliography......Page 125
4. Commercial near-Earth launcher: propulsion......Page 127
4.1 Propulsion system alternatives......Page 128
4.2 Propulsion system characteristics......Page 130
4.3 Airflow energy entering the engine......Page 131
4.4 Internal flow energy losses......Page 135
4.5 Spectrum of airbreathing operation......Page 142
4.6 Design space available—interaction of propulsion and materials/structures......Page 144
4.7 Major sequence of propulsion cycles......Page 149
4.8 Rocket-derived propulsion......Page 154
4.9 Airbreathing rocket propulsion......Page 157
4.10 Thermally integrated combined cycle propulsion......Page 160
4.11 Engine thermal integration......Page 163
4.12 Total system thermal integration......Page 164
4.13 Thermally integrated enriched air combined cycle propulsion......Page 169
4.14 Comparison of continuous operation cycles......Page 172
4.15 Conclusions with respect to continuous cycles......Page 178
4.16.1 What is a pulse detonation engine?......Page 180
4.16.2 Pulse detonation engine performance......Page 181
4.17 Conclusions with respect to pulse detonation cycles......Page 187
4.18 Comparison of continuous operation and pulsed cycles......Page 188
4.19 Launcher sizing with different propulsion systems......Page 192
4.20 Structural concept and structural index, ISTR......Page 194
4.21 Sizing results for continuous and pulse detonation engines......Page 196
4.22 Operational configuration concepts, SSTO and TSTO......Page 201
4.23 Emerging propulsion system concepts in development......Page 207
4.24 Aero-spike nozzle......Page 217
4.25 ORBITEC vortex rocket engine......Page 218
4.25.1 Vortex hybrid rocket engine (VHRE)......Page 219
4.25.2 Stoichiometric combustion rocket engine (SCORE)......Page 221
4.26 Bibliography......Page 222
5. Earth orbit on-orbit operations in near-Earth orbit, a necessary second step......Page 230
5.1.1 Getting to low Earth orbit: energy and propellant requirements......Page 233
5.2.1 Propellant ratio to deliver propellant to LEO......Page 237
5.2.2 Geostationary orbit satellites sizes and mass......Page 241
5.3 Maneuver between LEO and GEO, change in altitude at same orbital inclination......Page 242
5.3.2 Mass ratio required for altitude change......Page 244
5.3.3 Propellant delivery ratio for altitude change......Page 249
5.4 Changes in orbital inclination......Page 251
5.4.1 Energy requirements for orbital inclination change......Page 252
5.4.2 Mass ratio required for orbital inclination change......Page 255
5.4.3 Propellant delivery ratio for orbital inclination change......Page 258
5.5 Representative space transfer vehicles......Page 261
5.6 Operational considerations......Page 263
5.6.1 Missions per propellant delivery......Page 264
5.6.2 Orbital structures......Page 265
5.6.3 Orbital constellations......Page 266
5.6.4 Docking with space facilities and the International Space Station......Page 268
5.7 Observations and recommendations......Page 273
5.8 Bibliography......Page 274
6. Earth–Moon system: establishing a Solar System presence......Page 276
6.1 Earth–Moon characteristics......Page 277
6.2 Requirements to travel to the Moon......Page 280
6.2.1 Sustained operation lunar trajectories......Page 283
6.2.2 Launching from the Moon surface......Page 284
6.3.1 USSR exploration history......Page 289
6.3.2 USA exploration history......Page 290
6.4 Natural versus artificial orbital station environments......Page 291
6.4.2 Artificial orbital station......Page 292
6.4.3 Natural orbital station......Page 295
6.5.1 Martian analog......Page 298
6.5.2 Lunar exploration......Page 299
6.6 Bibliography......Page 301
Websites on MagLev......Page 303
7.1 Review of our Solar System distances, speeds, and propulsion requirements......Page 304
7.2 Alternative energy sources: nuclear energy......Page 309
7.3 Limits of chemical propulsion and alternatives......Page 313
7.3.1 I[sub(sp)] and energy sources......Page 314
7.3.2 The need for nuclear (high-energy) space propulsion......Page 317
7.4 Nuclear propulsion: basic choices......Page 318
7.4.1 Shielding......Page 321
7.5 Nuclear propulsion: a historical perspective......Page 328
7.6 Nuclear propulsion: current scenarios......Page 335
7.7 Nuclear reactors: basic technology......Page 343
7.8 Solid core NTR......Page 344
7.9 Particle bed reactor NTR......Page 348
7.11 MITEE NTR......Page 350
7.12 Gas core NTR......Page 353
7.13 C. Rubbia's engine......Page 356
7.14 Considerations about NTR propulsion......Page 360
7.15 Nuclear electric propulsion......Page 361
7.16 Nuclear arcjet rockets......Page 362
7.17 Nuclear electric rockets......Page 363
7.18 Electrostatic (ion) thrusters......Page 364
7.19 MPD thrusters......Page 369
7.20 Hybrid/combined NTR/NER engines......Page 372
7.21 Inductively heated NTR......Page 374
7.22 VASIMR (variable specific impulse magneto-plasma-dynamic rocket)......Page 375
7.23 Combining chemical and nuclear thermal rockets......Page 380
7.24 Conclusions......Page 382
7.25 Bibliography......Page 385
8.1 Introduction......Page 396
8.1.1 Quasi-interstellar destinations......Page 398
8.1.2 Times and distance......Page 402
8.2 The question of I[sub(sp)], thrust, and power for quasi-interstellar and stellar missions......Page 404
8.3 Traveling at relativistic speeds......Page 408
8.4 Power sources for quasi-interstellar and stellar propulsion......Page 411
8.5 Fusion and propulsion......Page 412
8.5.1 Mission length with I[sub(sp)] possible with fusion propulsion......Page 414
8.6 Fusion propulsion: fuels and their kinetics......Page 416
8.7 Fusion strategies......Page 419
8.8 Fusion propulsion reactor concepts......Page 421
8.9 MCF reactors......Page 422
8.10 Mirror MCF rockets......Page 425
8.10.1 Tokamak MCF rockets......Page 427
8.10.2 An unsteady MCF reactor: the dense plasma focus (DPF) rocket......Page 429
8.10.3 Shielding......Page 430
8.10.4 Direct thermal MCF vs. electric MCF rockets......Page 432
8.11 Fusion propulsion—inertial confinement......Page 434
8.11.1 Inertial electrostatic confinement fusion......Page 440
8.12 MCF and ICF fusion: a comparison......Page 441
8.13 Conclusions: Can we reach stars?......Page 449
8.14 Bibliography......Page 451
9. View to the future and exploration of our Galaxy......Page 457
9.1 Issues in developing near- and far-galactic space exploration......Page 459
9.2 Black holes and galactic travel......Page 467
9.3 Superluminal speed: Is it required?......Page 473
9.5 Bibliography......Page 478
A.2.1 Alpha decay......Page 482
A.2.2 Beta decay......Page 483
A.3.1 Activity (Bq)......Page 484
A.3.4 Equivalent dose, H (Sv)......Page 485
A.3.6 Collective dose (man Sv)......Page 487
A.4.1 Deterministic effects......Page 488
A.4.2 Stochastic effects......Page 489
A.5.1 Natural radiation exposure......Page 492
A.5.2 Medical radiation exposure......Page 495
A.5.3 Exposure from atmospheric nuclear testing......Page 496
A.5.4 Exposure from nuclear power production......Page 497
A.5.5 Exposure from major accidents......Page 498
A.5.7 Exposure from nuclear propulsion systems......Page 499
A.5.8 Comparison of exposures......Page 502
A.7 Bibliography......Page 503
B.1 Introduction......Page 506
B.2 Space fusion power: general issues......Page 509
B.2.1 Application of fusion for space propulsion......Page 511
B.2.2 Achievement of self-sustained conditions......Page 512
B.2.3 Design of a generic fusion propulsion system......Page 514
B.2.4 Mass budget......Page 516
B.2.5 Specific power......Page 519
B.2.6 Fusion power density......Page 521
B.2.7 Specific power α: summary......Page 522
B.3.1 Classification and present status of open magnetic field configurations......Page 523
B.3.2 Mirror configurations......Page 524
B.3.3 Field-reversed configurations......Page 536
B.3.4 Spheromaks......Page 545
B.3.5 Levitated dipole......Page 549
B.4.1 Technology......Page 551
B.5 Fusion propulsion performance......Page 553
B.6 Conclusions......Page 555
B.7 Bibliography......Page 557
C......Page 562
H......Page 563
M......Page 564
P......Page 565
S......Page 566
Z......Page 567