This second edition of a popular textbook is thoroughly revised with around 25% new and updated content. It provides an introduction to both plasma physics and fusion technology at a level that can be understood by advanced undergraduates and graduate students in the physical sciences and related engineering disciplines. As such, the contents cover various plasma confinement concepts, the support technologies needed to confine the plasma, and the designs of ITER as well as future fusion reactors. With end of chapter problems for use in courses.
Author(s): Weston M. Stacey
Edition: 2ed.
Publisher: Wiley
Year: 2010
Language: English
Pages: 265
Fusion: An Introduction to the Physics and Technology of Magnetic Confinement Fusion......Page 2
Contents......Page 8
Preface to the First Edition......Page 12
Preface......Page 14
Acknowledgments to the First Edition......Page 16
Acknowledgments......Page 18
1.1 Basics of Fusion......Page 20
1.2 Magnetic Confinement......Page 22
1.2.1 Closed Toroidal Confinement Systems......Page 23
1.2.2 Open (Mirror) Confinement Systems......Page 25
1.3.1 Scientific Feasibility......Page 27
1.3.2 Engineering Feasibility......Page 29
1.3.4 Economic Feasibility and Fuel Resources......Page 30
2.1 Plasma......Page 32
2.2 Electric and Magnetic Fields......Page 33
2.3 Plasma Frequency......Page 36
2.4 Coulomb Scattering......Page 37
2.5 Characteristic Times......Page 41
2.6 Resistivity......Page 42
2.7 Gyromotion......Page 43
2.8 Drifts......Page 44
3.1 Equilibrium and Pressure Balance......Page 48
3.2 Classical Transport......Page 50
3.3 Neoclassical Transport......Page 53
3.4 Fluctuation-Driven Transport......Page 54
4.1.1 Simple Mirrors......Page 56
4.1.2 Minimum-B Mirrors......Page 58
4.1.3 Tandem Mirrors......Page 60
4.2.1 Confinement Principles......Page 63
4.2.2 Stability......Page 68
4.2.4 MHD Instability Limits......Page 71
4.2.5.1 Ohmic Confinement......Page 73
4.2.5.3 H-Mode Confinement......Page 74
4.3 Alternative Confinement Concepts......Page 75
4.3.1 Stellarator......Page 76
4.3.3 Reversed-Field Pinch......Page 78
5.1 Ohmic Heating......Page 82
5.2 Neutral Beam Injection (NBI)......Page 83
5.3.1 Wave Phenomena in Plasmas......Page 87
5.3.2 Waveguides......Page 89
5.3.3 Launching an Electromagnetic Wave into a Plasma......Page 92
5.3.4 Radio-Frequency Heating......Page 93
5.4 Compression......Page 95
5.6 Non-Inductive Current Drive......Page 96
5.7 ITER Plasma Heating and Current Drive Systems......Page 97
6.1 Surface Erosion......Page 100
6.2 Impurity Radiation......Page 102
6.3 Impurity Control......Page 106
7.1.1 Long Straight Conductors......Page 112
7.1.2 Coaxial Loop Conductors......Page 114
7.1.3 Ideal Torus......Page 115
7.1.4 Solenoid......Page 118
7.2.1 Normal Conductors......Page 120
7.2.2 Superconductors......Page 123
7.2.3 Stability and Quench Protection......Page 124
7.3.1 Poloidal Field Coils......Page 126
7.3.2 Toroidal Field Coils......Page 129
7.3.3 Coil Interactions......Page 131
7.4 Structural Design Criteria......Page 133
7.5 ITER Magnet System......Page 134
8.1 Inductance......Page 138
8.2 Elementary Electric Circuit Theory......Page 140
8.3 Coupled Electromagnetic Circuits......Page 142
8.4 Tokamak Transient Electromagnetics......Page 143
8.5 Energy Storage Systems......Page 144
8.5.1 Inertial Energy Storage and Transfer......Page 145
8.5.3 Inductive Energy Storage and Transfer......Page 149
9.1 Radiation Transport......Page 154
9.2 Neutron Multiplication......Page 158
9.3 Nuclear Heating......Page 159
9.4.1 Displacement and Transmutation......Page 161
9.4.2 Material Property Changes......Page 165
9.5 Radioactivity......Page 170
9.6 Radiation Shielding......Page 174
10.1 Tritium Breeding......Page 178
10.2 Blanket Coolants and Structural Materials......Page 185
10.3 Heat Removal, Hydraulics, and Stress......Page 193
10.4 Plasma Facing Components......Page 200
10.5 ITER Blanket Test Modules......Page 204
10.6 Fissile Production......Page 206
10.7 Transmutation of Nuclear Waste......Page 209
11.1.1 Vacuum Pumping......Page 212
11.1.2 Vacuum Chamber Topology......Page 216
11.2 Tritium Fuel Cycle Processing......Page 218
11.3 Tritium Permeation......Page 221
11.4 Tritium Retention in Plasma-Facing Components......Page 223
11.5 Tritium Breeding and Inventory......Page 226
12.1.1 Confinement......Page 230
12.1.3 Beta Limit......Page 232
12.1.4 Kink Stability Limit......Page 233
12.1.5 Startup Inductive Volt-seconds......Page 234
12.1.8 Toroidal Field Magnets......Page 235
12.1.9 Blanket and Shield......Page 236
12.1.10.2 Stress Limits......Page 237
12.1.10.3 Temperature Limit......Page 238
12.1.11 Radiation Damage to Plasma Facing Components......Page 239
12.3 The International Thermonuclear Experimental Reactor (ITER)......Page 240
12.4 Future Tokamak Reactors......Page 245
12.5 Tokamak Demo Reactor......Page 248
12.6 Tokamak Neutron Source......Page 249
12.7 Future Stellarator Reactors......Page 250
12.8 Future Spherical Torus Reactor......Page 252
12.9 Future Reversed Field Pinch Reactor......Page 253
Appendix A: Frequently Used Physical Constants......Page 256
Appendix B: Energy Conversion Factors......Page 258
Appendix C: Engineering Conversion Factors......Page 260
Index......Page 262