Fundamentals of Smart Grid Systems offers an expansive introduction to the operationalization, integration, and management of smart grids―the distributed, renewable, responsive, and highly efficient power grid on the verge of radically transforming our energy system. The book reviews the design of smart grid systems, their associated technologies, and operations, helping users develop a modern foundational understanding of smart grid systems and many of their advanced implementations, where sophisticated technologies are employed. The work serves as a guidebook and primer for early career researchers, with a rich integration of current science, modern applications, and future implementations.
Author(s): Muhammad Kamran
Publisher: Academic Press
Year: 2022
Language: English
Pages: 499
City: London
Front Cover
Fundamentals of Smart Grid Systems
Copyright
Dedication
Contents
Preface
Acknowledgments
List of abbreviations
Chapter 1: Introduction to smart grids
1.1. Introduction
1.2. Conventional grid
1.3. Problems with conventional grid
1.4. What is a smart grid?
1.5. Overview of the smart grid
1.5.1. Smart grid architecture
1.5.1.1. Application layer
1.5.1.2. Communication layer
1.5.1.3. Power system layer
1.5.2. Grid monitoring
1.5.3. Electric vehicles
1.5.4. Distributed generation
1.5.5. Smart metering
1.5.6. Energy management
1.5.7. Energy forecasting
1.5.8. Demand response
1.5.9. Energy storage system
1.6. Smart grid communication
1.6.1. Wireless communication
1.6.1.1. Cellular communication
1.6.1.2. WiMAX
1.6.1.3. ZigBee
1.6.1.4. Z-wave
1.6.1.5. Satellite communication
1.6.1.6. Free space optical communication
1.6.2. Wired communication
1.6.2.1. Power line communication (PLC)
1.6.2.2. Fiber optical communication
1.6.2.3. Ethernet
1.7. Advantages of smart grid
1.7.1. Energy conservation
1.7.2. Reliability
1.7.3. Advancement in electric vehicles
1.7.4. Reduction in carbon footprint
1.7.5. Competitive price of energy
1.7.6. Smart devices and smart homes/smart buildings
1.8. Issues and challenges relating to smart grids
1.8.1. Communication challenges
1.8.1.1. Lack of standards
1.8.1.2. Interference
1.8.1.3. Transfer rate
1.8.2. Security challenges
1.8.2.1. Denial of service (DoS) attack
1.8.2.2. Privacy
1.8.2.3. Insider attack
1.8.2.4. Data injection
1.8.3. Big data challenges
1.8.3.1. Real-time application
1.8.3.2. Data visualization and compression
1.8.3.3. Heterogeneous data
1.8.4. Cloud computing challenges
1.9. Conclusion
Problems
References
Chapter 2: Energy sources and technologies
2.1. Introduction
2.2. Solar thermal energy
2.2.1. Parabolic trough
2.2.2. Solar tower
2.2.3. Parabolic dish
2.2.4. Solar water heater
2.2.5. Solar dryer
2.2.6. Solar cooker
2.3. Solar photovoltaics
2.4. Wind energy
2.5. Hydro energy
2.5.1. Fundamental equation of hydropower
2.5.2. Components of a hydropower plant
2.5.2.1. Forebay
2.5.2.2. Intake structure
2.5.2.3. Penstock
2.5.2.4. Surge chamber
2.5.2.5. Hydraulic turbine
2.5.2.6. Power house
2.5.2.7. Draft tube
2.5.2.8. Tailrace
2.5.3. Flow duration curves
2.6. Bioenergy
2.6.1. Biomass
2.6.1.1. Proximate analysis
2.6.1.2. Ultimate analysis
2.6.2. Biogas/anaerobic digestion process
2.6.2.1. Hydrolysis
2.6.2.2. Acidogenesis
2.6.2.3. Acetogenesis
2.6.2.4. Methanogenesis
2.6.3. Biodiesel
2.6.3.1. Transesterification
2.6.3.2. Flash point
2.6.3.3. Boiling point
2.6.3.4. Cloud point
2.6.3.5. Pour point
2.6.3.6. Calorific value
2.6.4. Hydrogen production
2.6.4.1. Biological processes
2.6.4.2. Thermochemical processes
2.6.4.3. Water splitting
2.7. Geothermal energy
2.7.1. Dry steam power plant
2.7.2. Flash steam power plant
2.7.3. Binary cycle power plant
2.7.4. Combined cycle power plant
2.8. Fuel cells
2.8.1. Proton exchange membrane fuel cell
2.8.2. Alkaline fuel cell
2.8.3. Direct methanol fuel cell
2.8.4. Molten carbonate fuel cell
2.8.5. Phosphoric acid fuel cell
2.8.6. Solid oxide fuel cell
2.9. Steam turbine power plants
2.9.1. Components of a steam turbine power plant
2.9.1.1. Boiler
2.9.1.2. Superheater
2.9.1.3. Economizer
2.9.1.4. Air preheater
2.9.2. Steam turbine Rankine cycle
2.10. Gas turbine power plants
2.11. Nuclear power plants
2.12. Conclusion
Problems
References
Chapter 3: Power grids
3.1. Introduction
3.2. Electrical power stations
3.3. Electrical substations
3.3.1. Step-up substation
3.3.2. Step-down substation
3.3.3. Distribution substation
3.4. AC circuit breakers
3.4.1. Oil circuit breaker
3.4.2. Vacuum circuit breaker
3.4.3. Air blast circuit breaker
3.4.4. SF6 circuit breaker
3.5. DC circuit breakers
3.5.1. Mechanical DC breaker
3.5.2. Solid-state DC breaker
3.5.3. Hybrid DC breaker
3.6. Substation bus bars
3.6.1. Single bus bar
3.6.1.1. Advantages
3.6.1.2. Disadvantages
3.6.2. Sectionalized single bus bar
3.6.2.1. Advantages
3.6.2.2. Disadvantages
3.6.3. Single breaker double bus bar configuration
3.6.3.1. Advantages
3.6.3.2. Disadvantages
3.6.4. Double breaker double bus bar configuration
3.6.4.1. Advantages
3.6.4.2. Disadvantages
3.6.5. Main and transfer bus bar configuration
3.6.5.1. Advantages
3.6.5.2. Disadvantages
3.6.6. Breaker and a half configuration
3.6.6.1. Advantages
3.6.6.2. Disadvantages
3.6.7. Ring bus configuration
3.6.7.1. Advantages
3.6.7.2. Disadvantages
3.7. Lightning arresters
3.7.1. Advantages
3.7.2. Disadvantages
3.8. Power factor
3.8.1. Causes of low power factor
3.8.2. Disadvantages of low power factor
3.8.3. Power factor improvement
3.8.3.1. Static capacitors
Advantages
Disadvantages
3.8.3.2. Synchronous condensers
Advantages
Disadvantages
3.8.3.3. Phase advancers
3.9. Transmission line
3.9.1. Conductors
3.9.1.1. Types of conductor materials
Copper
Aluminum
Cadmium copper
Aluminum conductor steel reinforced (ACSR)
3.9.1.2. Types of conductors
Solid conductors
Stranded conductors
Hollow conductors
Bundled conductors
3.9.2. Insulators
3.9.2.1. Pin type insulator
3.9.2.2. Suspension type insulator
Advantages
3.9.2.3. Strain insulator
3.9.2.4. Shackle type insulator
3.9.3. Resistance
3.9.3.1. Skin effect
3.9.3.2. Proximity effect
3.9.3.3. Spirality effect
3.9.4. Corona
3.9.4.1. Formation of corona effect
3.9.4.2. Causes of corona effect
3.9.4.3. Advantages of the corona effect
3.9.4.4. Disadvantages of the corona effect
3.9.4.5. Reduction of the corona effect
3.9.5. Ferranti effect
3.10. Transmission line faults
3.10.1. Open circuit faults
3.10.2. Short circuit faults
3.10.2.1. Symmetrical faults
3.10.2.2. Unsymmetrical faults
3.11. Distribution system
3.11.1. AC distribution systems
3.11.1.1. Primary distribution system
3.11.1.2. Secondary distribution system
3.11.2. DC distribution systems
3.11.2.1. Two-wire DC system
3.11.2.2. Three-wire DC system
3.11.3. Overhead versus underground distribution system
3.11.4. Connection schemes of a distribution system
3.11.4.1. Radial system
3.11.4.2. Ring main system
3.11.4.3. Interconnected system
3.12. Transformers in electric power grids
3.12.1. Electromotive force equation of a transformer
3.12.2. Voltage ratio of a transformer
3.12.3. Current ratio of a transformer
3.12.4. Equivalent circuit of a transformer
3.12.5. Voltage regulation of transformer
3.12.6. Losses in a transformer
3.12.7. Efficiency of a transformer
3.12.8. Condition for maximum efficiency
3.13. Three-phase transformer
3.13.1. Star-star (Y-Y)
3.13.1.1. Advantages
3.13.1.2. Disadvantages
3.13.2. Star-delta (Y-Delta)
3.13.3. Delta-star (Delta-Y)
3.13.4. Delta-delta (Delta-Delta)
3.14. Conclusion
Problems
Give brief answers to the following short questions
References
Chapter 4: Power electronics for smart grids
4.1. Introduction
4.2. Applications of power electronics
4.2.1. Solar photovoltaic system
4.2.2. Solar photovoltaic hybrid energy system
4.2.3. Wind energy system
4.2.4. Electric and hybrid vehicles
4.2.5. Fuel cell
4.2.6. Power electronics in the battery storage system
4.2.7. Electric drives
4.3. Solid-state devices
4.3.1. Construction of SCR
4.3.2. Two transistor model of SCR
4.3.3. Turning SCR ON
4.3.4. Turning the SCR off or the SCR commutation circuit
4.3.5. Gate turn-off (GTO) thyristor
4.3.6. Silicon-controlled switch (SCS)
4.3.7. Diode for alternating current (DIAC)
4.3.8. Triode for alternating current (TRIAC)
4.4. Rectifiers (AC-DC converters)
4.4.1. Single-phase half-wave uncontrolled rectifier with resistive load
4.4.2. Single-phase half-wave uncontrolled rectifier with inductive load
4.4.3. Single-phase uncontrolled half-wave rectifier with inductive load and freewheeling diode
4.4.4. Single-phase half-wave controlled rectifier with resistive load
4.4.5. Single-phase controlled half-wave rectifier (inductive load)
4.4.6. Single-phase controlled half-wave rectifier with inductive load and freewheeling diode
4.5. Converters (DC-DC converters)
4.5.1. Buck converters
4.5.2. Boost converters
4.5.3. Buck-boost converters
4.5.4. Cuk converters
4.6. Inverters (DC-AC inverters)
4.6.1. Single-phase full bridge inverter
4.6.2. Three-phase full bridge inverter
4.6.3. Multilevel inverters
4.6.3.1. Diode clamped MLI
4.6.3.2. Flying capacitor MLI
4.6.3.3. Cascaded H-bridge multilevel inverter
4.7. Cycloconverters (AC-AC converters)
4.7.1. Step-up cycloconverter
4.7.2. Step-down cycloconverter
4.8. Conclusion
Problems
References
Chapter 5: Planning and modeling of solar energy systems
5.1. Introduction
5.2. Solar photovoltaics
5.3. Modeling of photovoltaic cell
5.4. Effect of series resistance on the I-V curve of a solar cell
5.5. Effect of parallel resistance on the I-V curve of a solar cell
5.6. Effect of temperature on the I-V and P-V curves of a solar cell
5.7. Effect of irradiance on the I-V and P-V curves of a solar cell
5.8. Fill factor
5.9. Simulation of single diode model of a solar cell in LabVIEW for I-V and P-V curves under varying temperature and irr ...
5.10. Series and parallel connections of solar cells
5.11. Hot spot due to partial shading
5.12. Design considerations of a solar photovoltaic system
5.12.1. Load
5.12.2. Inverter
5.12.3. Battery
5.12.4. PV panels
5.13. Solar tracker
5.14. Perturb and observe (P&O) maximum power point tracker (MPPT) algorithm
5.14.1. Problems with conventional P&O algorithm
5.15. Simulation of perturb and observe MPPT algorithm in MATLAB
5.16. Simulation of fuzzy logic-based perturb and observe MPPT algorithm in MATLAB/Simulink
5.17. Incremental conductance (INC) MPPT algorithm
5.18. Simulation of incremental conductance (INC) MPPT algorithm in LabVIEW
5.19. Solar net metering
5.20. Conclusion
Problems
Problems 1-21 contain three, four, or five answer options A, B, C, D, and E. Choose the correct answer.
References
Chapter 6: Planning and modeling of wind energy systems
6.1. Introduction
6.2. Basic components of a wind turbine
6.2.1. Foundation
6.2.2. Tower
6.2.3. Rotor
6.2.4. Nacelle
6.2.5. Gearbox
6.3. Classification of wind turbines
6.3.1. Horizontal axis wind turbines (HAWTs)
6.3.2. Vertical axis wind turbines (VAWTs)
6.4. The fundamental equation of wind power
6.4.1. Betz limit
6.5. Wind energy conversion systems
6.5.1. Induction generators
6.5.2. Synchronous generator
6.6. Controlling the output frequency for variable speed wind turbines
6.6.1. Inertial response
6.6.1.1. Hidden inertia emulation
6.6.1.2. Fast power reserves
6.6.2. Droop control
6.6.3. De-loading
6.6.3.1. Pitch angle control
6.7. Advantages of wind energy
6.7.1. Renewable and sustainable
6.7.2. A clean source of energy
6.7.3. Cost-effective
6.7.4. Distributed generation
6.7.5. Location of wind power plant
6.7.6. Miscellaneous energy mix
6.7.7. Job opportunities
6.7.8. National security
6.8. Challenges to wind energy
6.8.1. Intermittent nature of wind
6.8.2. Noise pollution
6.8.3. Transmission of wind power
6.9. Conclusion
Problems
References
Chapter 7: Microgrid and hybrid energy systems
7.1. Introduction
7.2. Literature review
7.3. Distributed generation
7.3.1. Why distributed generation?
7.3.2. Distributed generation technologies
7.3.2.1. Combined cycle gas turbine
7.3.2.2. Reciprocating engine
7.3.2.3. Microturbines
7.3.2.4. Combustion gas turbine
7.3.2.5. Stirling engine
7.3.2.6. Solar
7.3.2.7. Wind
7.3.2.8. Biomass
7.3.2.9. Fuel cell
7.3.2.10. Micro-hydro
7.3.2.11. Geothermal
7.3.3. Advantages of distributed generation
7.3.4. Disadvantages of distributed generation
7.4. Renewable energy-based hybrid energy systems
7.4.1. Series hybrid energy system
7.4.2. Parallel hybrid energy system
7.4.3. Switched hybrid energy system
7.5. Design parameters of a microgrid and hybrid energy systems
7.5.1. Technical parameters
7.5.2. Economic parameters
7.5.3. Socio-political parameters
7.5.4. Environmental parameters
7.6. Control strategies for microgrid and hybrid energy systems
7.6.1. Primary level control in microgrids
7.6.2. Secondary level control in microgrids
7.6.3. Tertiary level control in microgrids
7.7. Case study: Parallel connected VSCs with DG sources in islanded and grid-connected mode
7.7.1. Deep neural network-based MPPT controller
7.7.2. Voltage controller
7.7.3. Current controller
7.7.4. Synchronous reference frame-phase locked loop (SRF-PLL)
7.8. Grid parity
7.8.1. Resources of DG
7.8.2. DG technologies and components
7.8.3. Environmental cost and benefits
7.8.4. Grid related cost
7.8.5. Evolution of electricity prices
7.9. Optimization of hybrid energy systems in RETScreen
7.9.1. Step 1-Location and facility
7.9.2. Step 2-Energy model
7.9.2.1. Wind energy model
7.9.2.2. The solar photovoltaic energy model
7.9.2.3. Hydro energy model
7.9.3. Step 3-Cost analysis
7.9.4. Step 4-Greenhouse gas emissions analysis
7.9.5. Step 5-Financial analysis model
7.9.6. Step 6-Sensitivity and risk analysis
7.10. Optimization of microgrid and hybrid energy systems in HOMER
7.10.1. Power sources in HOMER
7.10.1.1. Solar resources
7.10.1.2. Wind resources
7.10.2. Storage in HOMER
7.10.2.1. Batteries
7.10.2.2. Flywheel
7.10.3. Loads in HOMER
7.10.3.1. Primary load
7.10.3.2. Deferrable load
7.10.3.3. Thermal load
7.10.4. Optimization and sensitivity analysis
7.11. Comparison of RETScreen and HOMER analysis
7.12. Microgrid policy
7.12.1. Microgrid design policy in Europe
7.12.2. Microgrid design policy in the United States of America
7.12.3. Microgrid design policy in China
7.13. Conclusion
Problems
Problems 1-15 contain four answer options: A, B, C, and D. Choose the correct answer.
Answer the following short questions
References
Chapter 8: Energy statistics and forecasting for smart grids
8.1. Introduction
8.2. Numerical weather prediction
8.2.1. Governing equations
8.2.2. Numerical methods or numerical approximations
8.2.3. Parameterization
8.2.4. Initial and boundary conditions
8.3. Wind energy forecasting
8.4. Solar energy forecasting
8.5. Energy forecasting time horizons
8.5.1. Very short-term forecasting (VSTF)
8.5.2. Short-term forecasting (STF)
8.5.3. Medium-term forecasting (MTF)
8.5.4. Long-term forecasting (LTF)
8.6. Emerging forecasting techniques
8.6.1. Statistical forecasting techniques
8.6.1.1. Autoregressive moving average (ARMA)
8.6.1.2. Autoregressive integrated moving average (ARIMA)
8.6.1.3. Vector autoregression (VAR)
8.6.2. Machine learning forecasting techniques
8.6.2.1. Support vector machine (SVM)
8.6.2.2. Support vector regression (SVR)
8.6.2.3. Random forest
8.6.3. Deep learning forecasting methods
8.6.3.1. Feedforward neural networks (FFNNs)
8.6.3.2. Back-propagation neural networks (BPNNs)
8.6.3.3. Recurrent neural networks (RNNs)
8.6.3.4. Long short-term memory (LSTM)
8.6.3.5. Convolutional neural networks (CNNs)
8.6.4. Probabilistic forecasting methods
8.6.5. Probabilistic deep learning forecasting methods
8.6.5.1. Bayesian neural networks (BNNs)
8.6.6. Hybrid forecasting methods
8.6.6.1. Genetic algorithm-support vector machine (GA-SVM)
8.6.6.2. Auto regression-neural network (AR-net)
8.6.6.3. K-means-ARIMA
8.6.7. Preforecasting methods
8.6.7.1. Singular value decomposition (SVD)
8.6.7.2. Principal component analysis (PCA)
8.6.7.3. Autoencoders (AEs)
8.6.7.4. Convolutional autoencoders (CAEs)
8.7. Energy management in smart grids
8.7.1. The importance of the energy management system
8.7.2. Application of the energy management system
8.7.3. Tools for the energy management system
8.7.4. Challenges to the energy management system
8.8. Conclusion
Problems
References
Chapter 9: Energy storage in smart grids
9.1. Introduction
9.2. Compressed air energy storage
9.2.1. Types of compressed air energy storage
9.2.1.1. Adiabatic CAES method
9.2.1.2. Diabatic CAES method
9.2.1.3. Isothermal CAES method
9.2.2. Advantages of compressed air energy storage
9.3. Flywheel energy storage
9.4. Pumped hydro energy storage
9.5. Lithium-ion batteries
9.6. Lead-acid batteries
9.6.1. Battery capacity and depth of discharge
9.6.2. Specific energy
9.6.3. Energy density
9.6.4. The lifetime of the battery
9.6.5. The efficiency of the battery
9.6.6. Maintenance
9.7. Nickel-based batteries
9.8. Capacitors and electrochemical capacitors/supercapacitors
9.9. Superconducting magnetic energy storage
9.10. Flow batteries
9.10.1. Advantages of flow batteries
9.10.2. Disadvantages of flow batteries
9.11. Thermodynamics of battery storage
9.12. Energy storage applications
9.12.1. Grid stabilization
9.12.2. Renewable energy integration
9.12.3. Power quality
9.12.4. Frequency regulation
9.12.5. Load following
9.12.6. Peak shaving
9.12.7. Spinning reserve
9.12.8. Time shifting
9.12.9. Transient stability
9.13. SWOT analysis of battery energy storage systems in smart grids
9.13.1. Strengths
9.13.2. Weakness
9.13.3. Opportunities
9.13.4. Threats
9.14. Current market trends and future outlook
9.15. Environmental impact of energy storage systems
9.15.1. Mechanical energy storage systems
9.15.2. The electrical energy storage system
9.15.3. The chemical energy storage system
9.15.4. The electrochemical energy storage system
9.16. Conclusion
Problems
Problems 1-20 contain four answer options: A, B, C, and D. Choose the correct answer
References
Chapter 10: Electric vehicles and smart grids
10.1. Introduction
10.2. Electric vehicle modeling
10.2.1. Tractive effort
10.2.1.1. Rolling resistance force
10.2.1.2. Aerodynamic drag
10.2.1.3. Hill climbing force
10.2.1.4. Acceleration force
10.2.1.5. Total tractive effort
10.3. Technologies of electric vehicles
10.3.1. Battery electric vehicles (BEVs)
10.3.2. Hybrid electric vehicles (HEVs)
10.3.2.1. Series hybrid electric vehicles (SHEVs)
10.3.2.2. Parallel hybrid electric vehicles
10.3.2.3. Series-parallel hybrid electric vehicles
10.3.3. Plug-in hybrid electric vehicles
10.3.4. Fuel cell electric vehicles (FCEVs)
10.4. Integration of EVs into the electric grid
10.4.1. Phase imbalance and voltage instability
10.4.2. Electric vehicle charging and grid interaction
10.5. Integration of renewable energy sources with EVs
10.5.1. Integration of solar energy with electric vehicles
10.6. Concept and framework of V2G
10.6.1. Unidirectional V2G
10.6.2. Bidirectional V2G
10.6.3. Ancillary services
10.6.3.1. Frequency regulation
10.6.3.2. Voltage regulation
10.6.3.3. Peak shaving and load leveling
10.6.3.4. Spinning reserve
10.6.3.5. Renewable energy storage and reduction of intermittence
10.6.4. Applications of V2G
10.6.4.1. Load shifting
10.6.4.2. Load leveling and peak shaving
10.7. Energy storage systems for electric vehicles
10.7.1. Batteries
10.7.2. Ultracapacitors
10.7.3. Flywheels
10.8. SWOT analysis of electric vehicles
10.8.1. Strengths
10.8.2. Weaknesses
10.8.3. Opportunities
10.8.4. Threats
10.9. Conclusion
Problems
Problems 1-10 contain four answer options: A, B, C, and D. Choose the correct answer
Give brief answers to the following short questions
References
Chapter 11: Global status of smart grids
11.1. Introduction
11.2. Global smart grid market-Global forecast to 2026
11.2.1. Driver
11.2.2. Restraints: High capital investment and operation and maintenance costs
11.2.3. Opportunities: Existing smart city projects in developing countries
11.2.4. Challenges: Managing smart grid-related complex information
11.3. Key characteristics of the smart grid
11.4. Smart grid road maps from different electric utilities
11.5. Components-based status of the smart grid
11.5.1. Electric vehicles
11.5.2. Energy storage
11.5.3. Smart metering
11.5.4. Solar energy
11.5.5. Wind energy
11.6. Future research and development in smart grids
11.6.1. Power electronics
11.6.2. Sensing
11.6.3. Grid control
11.6.4. Communication network
11.6.5. Energy storage system
11.7. Conclusion
Problems
Answer the following short questions
References
Index
Back Cover