Fundamentals of Semiconductor Lasers explains the physics and fundamental characteristics of semiconductor lasers with regard to systems applications. The detailed and comprehensive presentation is unique in that it encourages the reader to consider different semiconductor lasers from different angles. Emphasis is placed on recognizing common concepts such operating principles and structure, and solving problems based on individual situations. The treatment is enhanced by an historical account of advances in semiconductor lasers over the years, discussing both those ideas that have persisted over the years and those that have faded out. The first four chapters cover the basics of semiconductors, including band structures, optical transitions, optical waveguides, and optical resonators. The remaining chapters discuss operating principles and basic characteristics of semiconductor lasers, and advanced topics including dynamic single-mode lasers, quantum well lasers, and control of spontaneous emission. The reader need only be familiar with undergraduate-level electromagnetism and quantum mechanics. After reading this book, the student will be able to think critically about semiconductor lasers, and be able to read and understand journal papers in the field. This book will be essential to any advanced undergraduate or graduate student of semiconductor lasers, and any professional physicist or engineer looking for a good overview of the subject.
Author(s): Takahiro Numai
Series: Springer Series in Optical Sciences
Edition: 1
Publisher: Springer
Year: 2004
Language: English
Pages: 275
Contents......Page 10
Preface......Page 8
1.1 Introduction......Page 14
1.2.1 k·p Perturbation Theory......Page 15
1.2.2 Spin-Orbit Interaction......Page 19
1.3.1 Potential Well......Page 25
1.3.2 Quantum Well, Wire, and Box......Page 27
1.4.1 Potential......Page 33
1.4.2 Period......Page 34
1.4.3 Other Features in Addition to Quantum Effects......Page 35
2.1 Introduction......Page 38
2.2 Light Emitting Processes......Page 39
2.2.3 Transition States......Page 40
2.3 Spontaneous Emission, Stimulated Emission, and Absorption......Page 41
2.4.1 Lasers......Page 42
2.4.2 Optical Gains......Page 43
3.1 Introduction......Page 56
3.2.1 Propagation Modes......Page 58
3.2.2 Guided Mode......Page 59
3.3.1 Effective Refractive Index Method......Page 67
3.3.2 Marcatili’s Method......Page 68
4.1 Introduction......Page 70
4.2 Fabry-Perot Cavity......Page 71
4.2.2 Free Spectral Range......Page 74
4.2.3 Spectral Linewidth......Page 75
4.2.5 Electric Field Inside Fabry-Perot Cavity......Page 76
4.3.1 Coupled Wave Theory [15]......Page 77
4.3.2 Discrete Approach......Page 81
4.3.3 Comparison of Coupled Wave Theory and Discrete Approach......Page 83
4.3.4 Category of Diffraction Gratings......Page 85
4.3.5 Phase-Shifted Grating......Page 86
4.3.6 Fabrication of Diffraction Gratings......Page 91
5.1 Key Elements in Semiconductor Lasers......Page 96
5.1.2 pn-Junction......Page 97
5.1.3 Double Heterostructure......Page 98
5.2.1 Resonance Condition......Page 99
5.2.2 Gain Condition......Page 100
5.3.1 Slope Efficiency......Page 101
5.3.3 Light Output Ratio from Facets......Page 102
5.4 Current versus Light Output (I-L) Characteristics......Page 103
5.4.1 Rate Equations......Page 104
5.4.2 Threshold Current Density......Page 106
5.4.3 Current versus Light Output (I-L) Characteristics in CW Operation......Page 108
5.4.4 Dependence of I-L on Temperature......Page 110
5.5 Current versus Voltage (I-V) Characteristics......Page 113
5.6.2 Derivative Electrical Resistance......Page 115
5.7 Polarization of Light......Page 116
5.8 Parameters and Specifications......Page 117
5.9 Two-Mode Operation......Page 118
5.10 Transverse Modes......Page 119
5.10.1 Vertical Transverse Modes......Page 122
5.10.2 Horizontal Transverse Modes......Page 125
5.11 Longitudinal Modes......Page 130
5.11.1 Static Characteristics of Fabry-Perot LDs......Page 132
5.11.2 Dynamic Characteristics of Fabry-Perot LDs......Page 134
5.12.1 Lightwave Transmission Systems and Modulation......Page 141
5.12.2 Direct Modulation......Page 143
5.13.1 Quantum Noises......Page 149
5.13.2 Relative Intensity Noise (RIN)......Page 161
5.13.3 RIN with No Carrier Fluctuations......Page 162
5.13.4 RIN with Carrier Fluctuations......Page 163
5.13.5 Noises on Longitudinal Modes......Page 167
5.13.6 Optical Feedback Noise......Page 170
5.14 Degradations and Lifetime......Page 175
5.14.1 Classification of Degradations......Page 176
5.14.2 Lifetime......Page 178
6.2 DFB-LDs and DBR-LDs......Page 180
6.2.1 DFB-LDs......Page 181
6.2.2 DBR-LDs......Page 187
6.3.1 Vertical Cavity Surface Emitting LDs......Page 188
6.4 Coupled Cavity LDs......Page 189
7.2.1 Configurations of Quantum Wells......Page 192
7.2.2 Characteristics of QW-LDs......Page 193
7.3.1 Effect of Strains......Page 202
7.3.2 Band-Structure Engineering......Page 204
7.3.3 Analysis......Page 206
7.4 Requirements for Fabrication......Page 214
8.1 Introduction......Page 216
8.2.1 Fermi’s Golden Rule......Page 217
8.2.3 Spontaneous Emission in a Microcavity......Page 218
8.2.4 Fluctuations in the Vacuum Field......Page 219
8.3 Microcavity LDs......Page 220
8.4 Photon Recycling......Page 221
A.1 Fundamental Equations......Page 224
A.2 Right-Handed Circularly Polarized Wave......Page 225
A.5 Relationship between Polarization of a Wave and an Effective Mass......Page 226
B.1 Nondegenerate Case......Page 228
B.2 Degenerate Case......Page 231
C.1 Fundamental Equation......Page 234
C.3 Transition Probability......Page 236
C.4 Electric Dipole Interaction (Semiclassical Treatment)......Page 237
D.1 Fundamental Equation......Page 242
D.2 TE Mode......Page 243
D.3 TM Mode......Page 245
E.2 TE Mode......Page 248
E.3 TM Mode......Page 252
F: Free Carrier Absorption and Plasma Effect......Page 254
G.1 Rate Equations with Fluctuations......Page 256
G.2 RIN without Carrier Fluctuations......Page 257
G.3 RIN with Carrier Fluctuations......Page 258
References......Page 262
C......Page 266
E......Page 267
H......Page 268
N......Page 269
R......Page 270
S......Page 271
Z......Page 272