Author(s): Bruce R. Munson, Donald F. Young, Theodore H. Okiishi, Wade W. Huebsch
Edition: 6th
Publisher: Wiley
Year: 2009
Language: English
Pages: 783
Tags: Механика;Механика жидкостей и газов;
Cover Page......Page 1
Title Page......Page 7
Coptright Page......Page 8
About the Authors......Page 9
Preface......Page 11
Featured in this Book......Page 16
Contents......Page 19
Learning Objectives......Page 25
1.1 Some Characteristics of Fluids......Page 27
1.2 Dimensions, Dimensional Homogeneity, and Units......Page 28
1.2.1 Systems of Units......Page 31
1.4.1 Density......Page 35
1.5 Ideal Gas Law......Page 36
1.6 Viscosity......Page 38
1.7.1 Bulk Modulus......Page 44
1.7.2 Compression and Expansion of Gases......Page 45
1.7.3 Speed of Sound......Page 46
1.8 Vapor Pressure......Page 47
1.9 Surface Tension......Page 48
1.10 A Brief Look Back in History......Page 51
1.11 Chapter Summary and Study Guide......Page 53
Review Problems......Page 54
Problems......Page 55
2.1 Pressure at a Point......Page 62
2.2 Basic Equation for Pressure Field......Page 64
2.3 Pressure Variation in a Fluid at Rest......Page 65
2.3.1 Incompressible Fluid......Page 66
2.3.2 Compressible Fluid......Page 69
2.4 Standard Atmosphere......Page 71
2.5 Measurement of Pressure......Page 72
2.6.1 Piezometer Tube......Page 74
2.6.2 U-Tube Manometer......Page 75
2.6.3 Inclined-Tube Manometer......Page 78
2.7 Mechanical and Electronic Pressure Measuring Devices......Page 79
2.8 Hydrostatic Force on a Plane Surface......Page 81
2.9 Pressure Prism......Page 87
2.10 Hydrostatic Force on a Curved Surface......Page 90
2.11.1 Archimedes’ Principle......Page 92
2.11.2 Stability......Page 95
2.12 Pressure Variation in a Fluid with Rigid-Body Motion......Page 96
2.12.1 Linear Motion......Page 97
2.12.2 Rigid-Body Rotation......Page 99
2.13 Chapter Summary and Study Guide......Page 101
Problems......Page 102
Learning Objectives......Page 117
3.1 Newton’s Second Law......Page 118
3.2 F = ma along a Streamline......Page 120
3.3 F = ma Normal to a Streamline......Page 124
3.4 Physical Interpretation......Page 126
3.5 Static, Stagnation, Dynamic, and Total Pressure......Page 129
3.6.1 Free Jets......Page 134
3.6.2 Confined Flows......Page 136
3.6.3 Flowrate Measurement......Page 142
3.7 The Energy Line and the Hydraulic Grade Line......Page 147
3.8.1 Compressibility Effects......Page 150
3.8.2 Unsteady Effects......Page 152
3.8.3 Rotational Effects......Page 154
3.9 Chapter Summary and Study Guide......Page 155
Problems......Page 157
4.1 The Velocity Field......Page 171
4.1.1 Eulerian and Lagrangian Flow Descriptions......Page 174
4.1.2 One-, Two-, and Three-Dimensional Flows......Page 175
4.1.4 Streamlines, Streaklines, and Pathlines......Page 176
4.2.1 The Material Derivative......Page 180
4.2.3 Convective Effects......Page 183
4.2.4 Streamline Coordinates......Page 187
4.3 Control Volume and System Representations......Page 189
4.4 The Reynolds Transport Theorem......Page 190
4.4.1 Derivation of the Reynolds Transport Theorem......Page 192
4.4.3 Relationship to Material Derivative......Page 197
4.4.5 Unsteady Effects......Page 198
4.4.6 Moving Control Volumes......Page 200
4.4.7 Selection of a Control Volume......Page 201
4.5 Chapter Summary and Study Guide......Page 202
Problems......Page 203
Learning Objectives......Page 211
5.1.1 Derivation of the Continuity Equation......Page 212
5.1.2 Fixed, Nondeforming Control Volume......Page 214
5.1.3 Moving, Nondeforming Control Volume......Page 220
5.1.4 Deforming Control Volume......Page 222
5.2.1 Derivation of the Linear Momentum Equation......Page 224
5.2.2 Application of the Linear Momentum Equation......Page 225
5.2.3 Derivation of the Moment-of-Momentum Equation......Page 239
5.2.4 Application of the Moment-of-Momentum Equation......Page 240
5.3.1 Derivation of the Energy Equation......Page 247
5.3.2 Application of the Energy Equation......Page 249
5.3.3 Comparison of the Energy Equation with the Bernoulli Equation......Page 253
5.3.4 Application of the Energy Equation to Nonuniform Flows......Page 259
5.3.5 Combination of the Energy Equationand the Moment-of-Momentum Equation......Page 262
5.4.1 Semi-infinitesimal Control Volume Statementof the Energy Equation......Page 263
5.4.2 Semi-infinitesimal Control Volume Statementof the Second Law of Thermodynamics......Page 264
5.4.3 Combination of the Equations of the First and Second Lawsof Thermodynamics......Page 265
5.4.4 Application of the Loss Form of the Energy Equation......Page 266
5.5 Chapter Summary and Study Guide......Page 268
Problems......Page 269
Learning Objectives......Page 287
6.1 Fluid Element Kinematics......Page 288
6.1.2 Linear Motion and Deformation......Page 289
6.1.3 Angular Motion and Deformation......Page 290
6.2.1 Differential Form of Continuity Equation......Page 293
6.2.3 The Stream Function......Page 296
6.3 Conservation of Linear Momentum......Page 299
6.3.1 Description of Forces Acting on the Differential Element......Page 300
6.3.2 Equations of Motion......Page 302
6.4.2 The Bernoulli Equation......Page 303
6.4.3 Irrotational Flow......Page 305
6.4.5 The Velocity Potential......Page 307
6.5 Some Basic, Plane Potential Flows......Page 310
6.5.1 Uniform Flow......Page 311
6.5.2 Source and Sink......Page 312
6.5.3 Vortex......Page 314
6.5.4 Doublet......Page 317
6.6.1 Source in a Uniform Stream—Half-Body......Page 319
6.6.2 Rankine Ovals......Page 322
6.6.3 Flow around a Circular Cylinder......Page 324
6.7 Other Aspects of Potential Flow Analysis......Page 329
6.8.1 Stress–Deformation Relationships......Page 330
6.8.2 The Navier–Stokes Equations......Page 331
6.9 Some Simple Solutions for Laminar, Viscous, Incompressible Fluids......Page 332
6.9.1 Steady, Laminar Flow between Fixed Parallel Plates......Page 333
6.9.2 Couette Flow......Page 335
6.9.3 Steady, Laminar Flow in Circular Tubes......Page 337
6.9.4 Steady, Axial, Laminar Flow in an Annulus......Page 340
6.10.1 Numerical Methods......Page 342
6.11 Chapter Summary and Study Guide......Page 343
Review Problems......Page 344
Problems......Page 345
Learning Objectives......Page 356
7.1 Dimensional Analysis......Page 357
7.2 Buckingham Pi Theorem......Page 359
7.3 Determination of Pi Terms......Page 360
7.4.1 Selection of Variables......Page 365
7.4.2 Determination of Reference Dimensions......Page 366
7.4.3 Uniqueness of Pi Terms......Page 368
7.5 Determination of Pi Terms by Inspection......Page 369
7.6 Common Dimensionless Groups in Fluid Mechanics......Page 370
7.7 Correlation of Experimental Data......Page 374
7.7.1 Problems with One Pi Term......Page 375
7.7.2 Problems with Two or More Pi Terms......Page 376
7.8.1 Theory of Models......Page 378
7.8.3 Practical Aspects of Using Models......Page 382
7.9.1 Flow through Closed Conduits......Page 384
7.9.2 Flow around Immersed Bodies......Page 387
7.9.3 Flow with a Free Surface......Page 391
7.10 Similitude Based on Governing Differential Equations......Page 394
7.11 Chapter Summary and Study Guide......Page 397
Problems......Page 398
Learning Objectives......Page 407
8.1 General Characteristics of Pipe Flow......Page 408
8.1.1 Laminar or Turbulent Flow......Page 409
8.1.2 Entrance Region and Fully Developed Flow......Page 412
8.1.3 Pressure and Shear Stress......Page 413
8.2.1 From F = ma Applied to a Fluid Element......Page 414
8.2.2 From the Navier–Stokes Equations......Page 418
8.2.3 From Dimensional Analysis......Page 420
8.2.4 Energy Considerations......Page 421
8.3.1 Transition from Laminar to Turbulent Flow......Page 423
8.3.2 Turbulent Shear Stress......Page 425
8.3.3 Turbulent Velocity Profile......Page 429
8.4 Dimensional Analysis of Pipe Flow......Page 433
8.4.1 Major Losses......Page 434
8.4.2 Minor Losses......Page 439
8.4.3 Noncircular Conduits......Page 449
8.5.1 Single Pipes......Page 452
8.5.2 Multiple Pipe Systems......Page 461
8.6.1 Pipe Flowrate Meters......Page 465
8.6.2 Volume Flow Meters......Page 470
8.7 Chapter Summary and Study Guide......Page 471
References......Page 473
Problems......Page 474
Learning Objectives......Page 485
9.1 General External Flow Characteristics......Page 486
9.1.1 Lift and Drag Concepts......Page 487
9.1.2 Characteristics of Flow Past an Object......Page 490
9.2.1 Boundary Layer Structure and Thickness on a Flat Plate......Page 494
9.2.2 Prandtl/Blasius Boundary Layer Solution......Page 498
9.2.3 Momentum Integral Boundary Layer Equation for a Flat Plate......Page 502
9.2.4 Transition from Laminar to Turbulent Flow......Page 507
9.2.5 Turbulent Boundary Layer Flow......Page 509
9.2.6 Effects of Pressure Gradient......Page 512
9.2.7 Momentum Integral Boundary Layer Equation with NonzeroPressure Gradient......Page 516
9.3 Drag......Page 517
9.3.1 Friction Drag......Page 518
9.3.2 Pressure Drag......Page 519
9.3.3 Drag Coefficient Data and Examples......Page 521
9.4.1 Surface Pressure Distribution......Page 533
9.4.2 Circulation......Page 542
9.5 Chapter Summary and Study Guide......Page 546
References......Page 547
Problems......Page 548
Learning Objectives......Page 558
10.1 General Characteristics of Open-Channel Flow......Page 559
10.2.1 Wave Speed......Page 560
10.2.2 Froude Number Effects......Page 563
10.3 Energy Considerations......Page 565
10.3.1 Specific Energy......Page 566
10.3.2 Channel Depth Variations......Page 569
10.4.1 Uniform Flow Approximations......Page 570
10.4.2 The Chezy and Manning Equations......Page 571
10.4.3 Uniform Depth Examples......Page 574
10.5 Gradually Varied Flow......Page 578
10.6 Rapidly Varied Flow......Page 579
10.6.1 The Hydraulic Jump......Page 580
10.6.2 Sharp-Crested Weirs......Page 585
10.6.3 Broad-Crested Weirs......Page 588
10.6.4 Underflow Gates......Page 590
10.7 Chapter Summary and Study Guide......Page 592
Review Problems......Page 593
Problems......Page 594
Learning Objectives......Page 603
11.1 Ideal Gas Relationships......Page 604
11.2 Mach Number and Speed of Sound......Page 609
11.3 Categories of Compressible Flow......Page 612
11.4 Isentropic Flow of an Ideal Gas......Page 616
11.4.1 Effect of Variations in Flow Cross-Sectional Area......Page 617
11.4.2 Converging–Diverging Duct Flow......Page 619
11.5.1 Adiabatic Constant Area Duct Flowwith Friction (Fanno Flow)......Page 633
11.5.2 Frictionless Constant Area Duct Flow with Heat Transfer(Rayleigh Flow)......Page 644
11.5.3 Normal Shock Waves......Page 650
11.6 Analogy between Compressible and Open-Channel Flows......Page 657
11.7 Two-Dimensional Compressible Flow......Page 659
11.8 Chapter Summary and Study Guide......Page 660
References......Page 663
Problems......Page 664
Learning Objectives......Page 669
12.1 Introduction......Page 670
12.2 Basic Energy Considerations......Page 671
12.3 Basic Angular Momentum Considerations......Page 675
12.4 The Centrifugal Pump......Page 677
12.4.1 Theoretical Considerations......Page 678
12.4.2 Pump Performance Characteristics......Page 682
12.4.3 Net Positive Suction Head (NPSH)......Page 684
12.4.4 System Characteristics and Pump Selection......Page 686
12.5 Dimensionless Parameters and Similarity Laws......Page 690
12.5.1 Special Pump Scaling Laws......Page 692
12.5.2 Specific Speed......Page 693
12.5.3 Suction Specific Speed......Page 694
12.6 Axial-Flow and Mixed-Flow Pumps......Page 695
12.8 Turbines......Page 697
12.8.1 Impulse Turbines......Page 698
12.8.2 Reaction Turbines......Page 706
12.9 Compressible Flow Turbomachines......Page 709
12.9.1 Compressors......Page 710
12.9.2 Compressible Flow Turbines......Page 713
12.10 Chapter Summary and Study Guide......Page 715
Problems......Page 717
A
COMPUTATIONAL FLUID
DYNAMICS AND FLOWLAB......Page 725
B PHYSICAL PROPERTIES OF FLUIDS......Page 738
C PROPERTIES OF THE U.S. STANDARD ATMOSPHERE......Page 743
D COMPRESSIBLE FLOW DATA FOR AN IDEAL GAS......Page 745
K FlowLab ProblemsSee book web site, www.Wiley.com/college/munson, for this material.......Page 749
ANSWERS......Page 751
INDEX......Page 757
VIDEO INDEX......Page 771