Author(s): Michael J. Moran, Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey
Edition: 9th
Publisher: Wiley
Year: 2018
Language: English
Pages: 875
Cover......Page 1
Title Page......Page 3
Copyright......Page 4
Preface......Page 5
Acknowledgments......Page 7
Contents......Page 8
1 Getting Started......Page 15
1.2 Defining Systems......Page 16
1.2.2 Control Volumes......Page 18
1.2.3 Selecting the System Boundary......Page 19
1.3.1 Macroscopic and Microscopic Views of Thermodynamics......Page 20
1.3.3 Extensive and Intensive Properties......Page 21
1.4 Measuring Mass, Length, Time, and Force......Page 22
1.4.1 SI Units......Page 23
1.4.2 English Engineering Units......Page 24
1.5 Specific Volume......Page 25
1.6.1 Pressure Measurement......Page 26
1.6.3 Pressure Units......Page 28
1.7 Temperature......Page 29
1.7.1 Thermometers......Page 30
1.7.3 Celsius and Fahrenheit Scales......Page 31
1.8.2 Analysis......Page 33
1.9 Methodology for Solving Thermodynamics Problems......Page 34
Chapter Summary and Study Guide......Page 36
2 Energy and the First Law of Thermodynamics......Page 37
2.1.1 Work and Kinetic Energy......Page 38
2.1.2 Potential Energy......Page 39
2.1.3 Units for Energy......Page 40
2.2 Broadening Our Understanding of Work......Page 41
2.2.1 Sign Convention and Notation......Page 42
2.2.2 Power......Page 43
2.2.3 Modeling Expansion or Compression Work......Page 44
2.2.5 Expansion or Compression Work in Quasiequilibrium Processes......Page 45
2.2.6 Further Examples of Work......Page 48
2.2.7 Further Examples of Work in Quasiequilibrium Processes......Page 49
2.3 Broadening Our Understanding of Energy......Page 50
2.4 Energy Transfer by Heat......Page 51
2.4.1 Sign Convention, Notation, and Heat Transfer Rate......Page 52
2.4.2 Heat Transfer Modes......Page 53
2.4.3 Closing Comments......Page 54
2.5 Energy Accounting: Energy Balance for Closed Systems......Page 55
2.5.1 Important Aspects of the Energy Balance......Page 57
2.5.2 Using the Energy Balance: Processes of Closed Systems......Page 58
2.5.3 Using the Energy Rate Balance: Steady-State Operation......Page 61
2.5.4 Using the Energy Rate Balance: Transient Operation......Page 63
2.6 Energy Analysis of Cycles......Page 64
2.6.1 Cycle Energy Balance......Page 65
2.6.3 Refrigeration and Heat Pump Cycles......Page 66
2.7 Energy Storage......Page 67
2.7.2 Storage Technologies......Page 68
Chapter Summary and Study Guide......Page 69
3 Evaluating Properties......Page 71
3.1.2 Fixing the State......Page 72
3.2 p–υ–T Relation......Page 73
3.2.1 p–υ–T Surface......Page 74
3.2.2 Projections of the p–υ–T Surface......Page 75
3.3 Studying Phase Change......Page 77
3.4 Retrieving Thermodynamic Properties......Page 79
3.5.1 Vapor and Liquid Tables......Page 80
3.5.2 Saturation Tables......Page 82
3.6.2 Retrieving u and h Data......Page 86
3.7 Evaluating Properties Using Computer Software......Page 88
3.8 Applying the Energy Balance Using Property Tables and Software......Page 90
3.8.1 Using Property Tables......Page 91
3.8.2 Using Software......Page 93
3.9 Introducing Specific Heats cυ and cp......Page 94
3.10.1 Approximations for Liquids Using Saturated Liquid Data......Page 96
3.10.2 Incompressible Substance Model......Page 97
3.11.2 Compressibility Factor, Z......Page 99
3.11.3 Generalized Compressibility Data, Z Chart......Page 100
3.11.4 Equations of State......Page 103
3.12.2 Ideal Gas Model......Page 104
3.13.1 Δu, Δh, cυ , and cp Relations......Page 106
3.13.2 Using Specific Heat Functions......Page 107
3.14.1 Using Ideal Gas Tables......Page 109
3.14.2 Using Constant Specific Heats......Page 111
3.14.3 Using Computer Software......Page 112
3.15 Polytropic Process Relations......Page 114
Chapter Summary and Study Guide......Page 116
4 Control Volume Analysis Using Energy......Page 119
4.1.1 Developing the Mass Rate Balance......Page 120
4.2 Forms of the Mass Rate Balance......Page 121
4.2.1 One-Dimensional Flow Form of the Mass Rate Balance......Page 122
4.3.1 Steady-State Application......Page 123
4.3.2 Time-Dependent (Transient) Application......Page 124
4.4.1 Developing the Energy Rate Balance for a Control Volume......Page 126
4.4.2 Evaluating Work for a Control Volume......Page 127
4.4.4 Integral Form of the Control Volume Energy Rate Balance......Page 128
4.5.1 Steady-State Forms of the Mass and Energy Rate Balances......Page 129
4.5.2 Modeling Considerations for Control Volumes at Steady State......Page 130
4.6 Nozzles and Diffusers......Page 131
4.6.2 Application to a Steam Nozzle......Page 132
4.7 Turbines......Page 133
4.7.1 Steam and Gas Turbine Modeling Considerations......Page 134
4.7.2 Application to a Steam Turbine......Page 135
4.8.2 Applications to an Air Compressor and a Pump System......Page 136
4.8.3 Pumped-Hydro and Compressed-Air Energy Storage......Page 139
4.9 Heat Exchangers......Page 140
4.9.1 Heat Exchanger Modeling Considerations......Page 141
4.9.2 Applications to a Power Plant Condenser and Computer Cooling......Page 142
4.10.1 Throttling Device Modeling Considerations......Page 144
4.10.2 Using a Throttling Calorimeter to Determine Quality......Page 145
4.11 System Integration......Page 146
4.12.2 The Energy Balance in Transient Analysis......Page 149
4.12.3 Transient Analysis Applications......Page 150
Chapter Summary and Study Guide......Page 156
5 The Second Law of Thermodynamics......Page 159
5.1.1 Motivating the Second Law......Page 160
5.1.2 Opportunities for Developing Work......Page 161
5.1.3 Aspects of the Second Law......Page 162
5.2.2 Kelvin–Planck Statement of the Second Law......Page 163
5.3 Irreversible and Reversible Processes......Page 165
5.3.1 Irreversible Processes......Page 166
5.3.2 Demonstrating Irreversibility......Page 167
5.3.3 Reversible Processes......Page 169
5.3.4 Internally Reversible Processes......Page 170
5.4 Interpreting the Kelvin–Planck Statement......Page 171
5.5 Applying the Second Law to Thermodynamic Cycles......Page 172
5.6.1 Limit on Thermal Efficiency......Page 173
5.6.2 Corollaries of the Second Law for Power Cycles......Page 174
5.7.1 Limits on Coefficients of Performance......Page 175
5.7.2 Corollaries of the Second Law for Refrigeration and Heat Pump Cycles......Page 176
5.8.1 The Kelvin Scale......Page 177
5.8.2 The Gas Thermometer......Page 178
5.8.3 International Temperature Scale......Page 179
5.9 Maximum Performance Measures for Cycles Operating Between Two Reservoirs......Page 180
5.9.1 Power Cycles......Page 181
5.9.2 Refrigeration and Heat Pump Cycles......Page 182
5.10.1 Carnot Power Cycle......Page 185
5.10.2 Carnot Refrigeration and Heat Pump Cycles......Page 186
5.11 Clausius Inequality......Page 187
Chapter Summary and Study Guide......Page 189
6 Using Entropy......Page 191
6.1.1 Defining Entropy Change......Page 192
6.2 Retrieving Entropy Data......Page 193
6.2.3 Liquid Data......Page 194
6.2.5 Using Graphical Entropy Data......Page 195
6.3 Introducing the T dS Equations......Page 196
6.5 Entropy Change of an Ideal Gas......Page 198
6.5.1 Using Ideal Gas Tables......Page 199
6.5.2 Assuming Constant Specific Heats......Page 200
6.6 Entropy Change in Internally Reversible Processes of Closed Systems......Page 201
6.6.2 Carnot Cycle Application......Page 202
6.6.3 Work and Heat Transfer in an Internally Reversible Process of Water......Page 203
6.7 Entropy Balance for Closed Systems......Page 204
6.7.1 Interpreting the Closed System Entropy Balance......Page 205
6.7.3 Applications of the Closed System Entropy Balance......Page 206
6.7.4 Closed System Entropy Rate Balance......Page 209
6.8.1 Increase of Entropy Principle......Page 210
6.8.2 Statistical Interpretation of Entropy......Page 212
6.9 Entropy Rate Balance for Control Volumes......Page 214
6.10 Rate Balances for Control Volumes at Steady State......Page 215
6.10.2 Applications of the Rate Balances to Control Volumes at Steady State......Page 216
6.11.1 General Considerations......Page 221
6.11.2 Using the Ideal Gas Model......Page 222
6.11.3 Illustrations: Isentropic Processes of Air......Page 224
6.12.1 Isentropic Turbine Efficiency......Page 226
6.12.2 Isentropic Nozzle Efficiency......Page 229
6.12.3 Isentropic Compressor and Pump Efficiencies......Page 230
6.13.1 Heat Transfer......Page 232
6.13.2 Work......Page 233
6.13.3 Work in Polytropic Processes......Page 234
Chapter Summary and Study Guide......Page 236
7 Exergy Analysis......Page 239
7.1 Introducing Exergy......Page 240
7.2.1 Environment and Dead State......Page 241
7.3 Exergy of a System......Page 242
7.3.2 Specific Exergy......Page 244
7.3.3 Exergy Change......Page 246
7.4.1 Introducing the Closed System Exergy Balance......Page 247
7.4.2 Closed System Exergy Rate Balance......Page 250
7.4.3 Exergy Destruction and Loss......Page 251
7.4.4 Exergy Accounting......Page 253
7.5 Exergy Rate Balance for Control Volumes at Steady State......Page 254
7.5.1 Comparing Energy and Exergy for Control Volumes at Steady State......Page 256
7.5.2 Evaluating Exergy Destruction in Control Volumes at Steady State......Page 257
7.5.3 Exergy Accounting in Control Volumes at Steady State......Page 260
7.6.1 Matching End Use to Source......Page 263
7.6.2 Exergetic Efficiencies of Common Components......Page 265
7.7 Thermoeconomics......Page 267
7.7.2 Using Exergy in Design......Page 268
7.7.3 Exergy Costing of a Cogeneration System......Page 270
Chapter Summary and Study Guide......Page 274
8 Vapor Power Systems......Page 275
8.1 Introducing Vapor Power Plants......Page 280
8.2 The Rankine Cycle......Page 282
8.2.1 Modeling the Rankine Cycle......Page 283
8.2.2 Ideal Rankine Cycle......Page 285
8.2.3 Effects of Boiler and Condenser Pressures on the Rankine Cycle......Page 288
8.2.4 Principal Irreversibilities and Losses......Page 290
8.3 Improving Performance—Superheat, Reheat, and Supercritical......Page 293
8.4.1 Open Feedwater Heaters......Page 298
8.4.2 Closed Feedwater Heaters......Page 301
8.4.3 Multiple Feedwater Heaters......Page 303
8.5.1 Working Fluids......Page 306
8.5.2 Cogeneration......Page 307
8.5.3 Carbon Capture and Storage......Page 309
8.6 Case Study: Exergy Accounting of a Vapor Power Plant......Page 310
Chapter Summary and Study Guide......Page 315
9 Gas Power Systems......Page 317
9.1 Introducing Engine Terminology......Page 318
9.2 Air-Standard Otto Cycle......Page 320
9.3 Air-Standard Diesel Cycle......Page 325
9.4 Air-Standard Dual Cycle......Page 328
9.5 Modeling Gas Turbine Power Plants......Page 331
9.6.1 Evaluating Principal Work and Heat Transfers......Page 332
9.6.2 Ideal Air-Standard Brayton Cycle......Page 333
9.6.3 Considering Gas Turbine Irreversibilities and Losses......Page 338
9.7 Regenerative Gas Turbines......Page 340
9.8.1 Gas Turbines with Reheat......Page 343
9.8.2 Compression with Intercooling......Page 345
9.8.3 Reheat and Intercooling......Page 349
9.8.4 Ericsson and Stirling Cycles......Page 351
9.9.1 Combined Gas Turbine–Vapor Power Cycle......Page 353
9.10 Integrated Gasification Combined-Cycle Power Plants......Page 358
9.11 Gas Turbines for Aircraft Propulsion......Page 360
9.12.1 Momentum Equation for Steady One-Dimensional Flow......Page 364
9.12.2 Velocity of Sound and Mach Number......Page 365
9.13.1 Exploring the Effects of Area Change in Subsonic and Supersonic Flows......Page 367
9.13.2 Effects of Back Pressure on Mass Flow Rate......Page 370
9.13.3 Flow Across a Normal Shock......Page 372
9.14.1 Isentropic Flow Functions......Page 373
9.14.2 Normal Shock Functions......Page 376
Chapter Summary and Study Guide......Page 380
10 Refrigeration and Heat Pump Systems......Page 383
10.1.1 Carnot Refrigeration Cycle......Page 384
10.1.2 Departures from the Carnot Cycle......Page 385
10.2.1 Evaluating Principal Work and Heat Transfers......Page 386
10.2.2 Performance of Ideal Vapor-Compression Systems......Page 387
10.2.3 Performance of Actual Vapor-Compression Systems......Page 389
10.2.4 The p–h Diagram......Page 392
10.3 Selecting Refrigerants......Page 393
10.4.1 Cold Storage......Page 396
10.4.2 Cascade Cycles......Page 397
10.4.3 Multistage Compression with Intercooling......Page 398
10.5 Absorption Refrigeration......Page 399
10.6 Heat Pump Systems......Page 400
10.6.2 Vapor-Compression Heat Pumps......Page 401
10.7.1 Brayton Refrigeration Cycle......Page 404
10.7.2 Additional Gas Refrigeration Applications......Page 408
10.7.3 Automotive Air Conditioning Using Carbon Dioxide......Page 409
Chapter Summary and Study Guide......Page 410
11 Thermodynamic Relations......Page 413
11.1.1 Getting Started......Page 414
11.1.2 Two-Constant Equations of State......Page 415
11.1.3 Multiconstant Equations of State......Page 418
11.2 Important Mathematical Relations......Page 419
11.3.1 Principal Exact Differentials......Page 422
11.3.2 Property Relations from Exact Differentials......Page 423
11.3.3 Fundamental Thermodynamic Functions......Page 427
11.4.1 Considering Phase Change......Page 428
11.4.2 Considering Single-Phase Regions......Page 431
11.5.1 Volume Expansivity, Isothermal and Isentropic Compressibility......Page 436
11.5.2 Relations Involving Specific Heats......Page 437
11.5.3 Joule–Thomson Coefficient......Page 440
11.6.1 Developing Tables by Integration Using p–υ–T and Specific Heat Data......Page 442
11.6.2 Developing Tables by Differentiating a Fundamental Thermodynamic Function......Page 444
11.7 Generalized Charts for Enthalpy and Entropy......Page 446
11.8 p–υ–T Relations for Gas Mixtures......Page 452
11.9 Analyzing Multicomponent Systems......Page 456
11.9.1 Partial Molal Properties......Page 457
11.9.2 Chemical Potential......Page 459
11.9.3 Fundamental Thermodynamic Functions for Multicomponent Systems......Page 460
11.9.4 Fugacity......Page 462
11.9.5 Ideal Solution......Page 465
11.9.6 Chemical Potential for Ideal Solutions......Page 466
Chapter Summary and Study Guide......Page 467
12 Ideal Gas Mixture and Psychrometric Applications......Page 471
12.1 Describing Mixture Composition......Page 472
12.2 Relating p, V, and T for Ideal Gas Mixtures......Page 475
12.3.2 Evaluating cυ and cp......Page 477
12.3.4 Working on a Mass Basis......Page 478
12.4.1 Mixture Processes at Constant Composition......Page 479
12.4.2 Mixing of Ideal Gases......Page 484
12.5.1 Moist Air......Page 488
12.5.2 Humidity Ratio, Relative Humidity, Mixture Enthalpy, and Mixture Entropy......Page 489
12.5.3 Modeling Moist Air in Equilibrium with Liquid Water......Page 491
12.5.4 Evaluating the Dew Point Temperature......Page 492
12.5.5 Evaluating Humidity Ratio Using the Adiabatic-Saturation Temperature......Page 496
12.6 Psychrometers: Measuring the Wet-Bulb and Dry-Bulb Temperatures......Page 497
12.7 Psychrometric Charts......Page 498
12.8.1 Applying Mass and Energy Balances to Air-Conditioning Systems......Page 500
12.8.2 Conditioning Moist Air at Constant Composition......Page 502
12.8.3 Dehumidification......Page 504
12.8.4 Humidification......Page 507
12.8.5 Evaporative Cooling......Page 508
12.8.6 Adiabatic Mixing of Two Moist Air Streams......Page 510
12.9 Cooling Towers......Page 513
Chapter Summary and Study Guide......Page 515
13 Reacting Mixtures and Combustion......Page 517
13.1 Introducing Combustion......Page 518
13.1.2 Modeling Combustion Air......Page 519
13.1.3 Determining Products of Combustion......Page 522
13.2.1 Evaluating Enthalpy for Reacting Systems......Page 525
13.2.2 Energy Balances for Reacting Systems......Page 528
13.2.3 Enthalpy of Combustion and Heating Values......Page 534
13.3.2 Using Computer Software......Page 537
13.3.3 Closing Comments......Page 539
13.4 Fuel Cells......Page 540
13.4.1 Proton Exchange Membrane Fuel Cell......Page 541
13.4.2 Solid Oxide Fuel Cell......Page 543
13.5.1 Evaluating Entropy for Reacting Systems......Page 544
13.5.2 Entropy Balances for Reacting Systems......Page 545
13.5.3 Evaluating Gibbs Function for Reacting Systems......Page 548
13.6 Conceptualizing Chemical Exergy......Page 550
13.6.2 Evaluating Chemical Exergy for Several Cases......Page 552
13.7 Standard Chemical Exergy......Page 554
13.7.1 Standard Chemical Exergy of a Hydrocarbon: CaHb......Page 555
13.7.2 Standard Chemical Exergy of Other Substances......Page 558
13.8.1 Calculating Total Exergy......Page 559
13.8.2 Calculating Exergetic Efficiencies of Reacting Systems......Page 563
Chapter Summary and Study Guide......Page 566
14 Chemical and Phase Equilibrium......Page 569
14.1 Introducing Equilibrium Criteria......Page 570
14.1.1 Chemical Potential and Equilibrium......Page 571
14.1.2 Evaluating Chemical Potentials......Page 573
14.2.1 Introductory Case......Page 574
14.2.2 General Case......Page 575
14.3.1 Equilibrium Constant for Ideal Gas Mixtures......Page 576
14.3.2 Illustrations of the Calculation of Equilibrium Compositions for Reacting Ideal Gas Mixtures......Page 579
14.3.3 Equilibrium Constant for Mixtures and Solutions......Page 583
14.4.1 Determining Equilibrium Flame Temperature......Page 584
14.4.2 Van’t Hoff Equation......Page 587
14.4.3 Ionization......Page 588
14.4.4 Simultaneous Reactions......Page 589
14.5 Equilibrium between Two Phases of a Pure Substance......Page 592
14.6 Equilibrium of Multicomponent, Multiphase Systems......Page 593
14.6.1 Chemical Potential and Phase Equilibrium......Page 594
14.6.2 Gibbs Phase Rule......Page 596
Chapter Summary and Study Guide......Page 597
Index to Tables in SI Units......Page 599
Index to Tables in English Units......Page 647
Index to Figures and Charts......Page 695
Exercises and Problems......Page 711
Index......Page 867
EULA......Page 875