Electromagnetics is too important in too many fields for knowledge to be gathered on the fly. A deep understanding gained through structured presentation of concepts and practical problem solving is the best way to approach this important subject. Fundamentals of Engineering Electromagnetics provides such an understanding, distilling the most important theoretical aspects and applying this knowledge to the formulation and solution of real engineering problems. Comprising chapters drawn from the critically acclaimed Handbook of Engineering Electromagnetics, this book supplies a focused treatment that is ideal for specialists in areas such as medicine, communications, and remote sensing who have a need to understand and apply electromagnetic principles, but who are unfamiliar with the field. Here is what the critics have to say about the original work "…accompanied with practical engineering applications and useful illustrations, as well as a good selection of references … those chapters that are devoted to areas that I am less familiar with, but currently have a need to address, have certainly been valuable to me. This book will therefore provide a useful resource for many engineers working in applied electromagnetics, particularly those in the early stages of their careers." -Alastair R. Ruddle, The IEE Online "…a tour of practical electromagnetics written by industry experts … provides an excellent tour of the practical side of electromagnetics … a useful reference for a wide range of electromagnetics problems … a very useful and well-written compendium…" -Alfy Riddle, IEEE Microwave Magazine Fundamentals of Engineering Electromagnetics lays the theoretical foundation for solving new and complex engineering problems involving electromagnetics.
Author(s): Rajeev Bansal
Edition: 1
Publisher: CRC Press
Year: 2006
Language: English
Pages: 399
Contents......Page 9
1.1.1. Lorentz Force Equation......Page 10
1.1.2. Material Parameters and Constitutive Relations......Page 12
Ampere’s Circuital Law......Page 16
Gauss’ Law for the Electric Field......Page 17
Law of Conservation of Charge......Page 18
1.2.2 Maxwell’s Equations in Differential Form and the Continuity Equation......Page 21
1.2.3. Boundary Conditions......Page 24
1.2.4. Electromagnetic Potentials and Potential Function Equations......Page 26
1.2.5. Power Flow and Energy Storage......Page 27
1.3.1. Classification of Fields......Page 29
Electrostatic Fields and Capacitance......Page 30
Magnetostatic Fields and Inductance......Page 34
Electromagnetostatic Fields and Conductance......Page 36
Electroquasistatic Fields......Page 40
Magnetoquasistatic Fields......Page 42
Quasistatic Fields in a Conductor......Page 43
Wave Equation and Solutions......Page 46
Distributed Circuit Concept......Page 53
1.3.5. Hertzian Dipole Fields via the Thread of Statics-Quasistatics-Waves......Page 56
REFERENCES......Page 61
2.1. INTRODUCTION......Page 62
2.2. THE ELECTROQUASISTATIC REGIME......Page 63
2.3. DISCRETE AND DISTRIBUTED CAPACITANCE......Page 65
2.5. THE ORIGINS OF ELECTROSTATIC CHARGE......Page 66
2.7. INDUCTION CHARGING......Page 69
2.8. DIELECTRIC BREAKDOWN......Page 70
2.9. CORONA DISCHARGE......Page 72
2.10. CHARGES AND FORCE......Page 73
2.11. PARTICLE CHARGING IN AIR......Page 75
2.13. ELECTROSTATIC COATING......Page 78
2.14. ELECTROSTATIC PAINT SPRAYING......Page 79
2.15. ELECTROPHOTOGRAPHY......Page 80
2.16. ELECTROSTATIC PRECIPITATION......Page 81
2.17. FIELD AND CHARGE MEASUREMENT......Page 84
2.18. ELECTROSTATIC FIELD MILL......Page 85
2.19. NONCONTACTING VOLTMETER......Page 86
2.20. MICROMACHINES......Page 89
2.22. ELECTROSTATIC DISCHARGE AND CHARGE NEUTRALIZATION......Page 92
REFERENCES......Page 94
3.1. INTRODUCTION......Page 98
3.2.2. The Biot-Savart Law......Page 99
3.2.3. Units: How Large is a Tesla?......Page 100
3.2.6. Magnetic Flux......Page 101
3.2.7. Ampere’s Law in Vacuum......Page 102
3.2.8. Magnetic Field in Materials......Page 103
3.2.9. Generalized Ampere’s Law and Magnetic Field Intensity......Page 104
3.2.10. Macroscopic Currents Equivalent to a Magnetized Material......Page 105
3.2.11. Boundary Conditions......Page 106
3.2.12. Basic Properties of Magnetic Materials......Page 107
3.2.13. Magnetic Circuits......Page 110
3.3.1. Basic Properties of Magnetic Force on a Charged Particle (the Lorentz Force)......Page 112
Charged Particle Moving in a Uniform Magnetic Field......Page 113
The Hall Effect......Page 114
Helmholtz Coils......Page 116
Magnetic Force in a Loudspeaker......Page 118
Magnetic Field of a Straight Wire......Page 119
Magnetic Field of a Toroidal Coil......Page 121
Magnetic Field of a Stripline......Page 122
3.3.5. Measurements of Basic Properties of Magnetic Materials......Page 123
3.3.6. Magnetic Storage......Page 124
3.3.7. Magnetic Circuits......Page 127
3.3.8. Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI)......Page 129
REFERENCES AND FURTHER READING......Page 131
4.1. INTRODUCTION......Page 132
4.2.1. The Induced Electric Field......Page 133
4.2.2. Faraday’s Law of Electromagnetic Induction......Page 134
4.2.3. Potential Difference and Voltage in a Time-varying Electric and Magnetic Field......Page 135
4.2.4. Self-inductance and Mutual Inductance......Page 136
4.2.5. Energy and Forces in the Magnetic Field......Page 138
4.3.1. Magnetic Coupling......Page 140
4.3.2. Lentz’s Law......Page 141
4.3.4. The Skin Effect and the Proximity and Edge Effects......Page 142
4.3.5. Limitations of Circuit Theory......Page 145
4.3.6. Superconducting Loops......Page 146
4.4.1. An AC Generator......Page 147
4.4.2. Induction Motors......Page 148
4.4.4. Measurement of AC Currents......Page 149
4.4.5. Problems in Measurement of AC Voltage......Page 150
4.4.6. Readout of Information Stored on a Magnetic Disk......Page 151
4.4.7. Transformers......Page 152
Mutual Inductance Between a Toroidal Coil and a Wire Loop Encircling the Toroid......Page 154
Mutual Inductance of Two Crossed Two-wire Lines......Page 155
Self-inductance of a Thin Solenoid......Page 156
Self-inductance of a Coaxial Cable......Page 159
External Self-inductance of a Thin Two-wire Line......Page 160
Self-inductance and Mutual Inductance of Two Windings over a Toroidal Core......Page 161
Flat Multiconductor Cable......Page 162
Neumann’s Formula for External Self-inductance of a Wire Loop......Page 163
4.6.2. Losses in Ferromagnetic Materials Due to Hysteresis and Eddy Currents......Page 164
Ferrite Anechoic Chambers for EMC/EMI Testing......Page 165
4.6.5. Force of an Electromagnet......Page 166
4.6.6. Comparison of Electric and Magnetic Pressure......Page 167
4.7.1. Mutual Inductance Between Monophase Cables Laid on the Bottom of the Sea......Page 168
4.7.3. Rough Calculation of Induced Voltages in a Human Body Due to Currents in Power Lines......Page 169
REFERENCES......Page 170
5.1. WAVE EQUATIONS AND CHARACTERISTICS......Page 172
5.1.2. Dispersion......Page 174
5.1.4. Group Velocity......Page 175
5.1.5. Polarization......Page 177
5.1.6. Poynting’s Theorem......Page 178
5.1.7. Boundary Conditions......Page 180
5.1.8. Wave Reflection......Page 181
5.2. FREE-SPACE PROPAGATION MODEL......Page 183
5.3. PATH LOSS MODEL......Page 184
5.4. EMPIRICAL PATH LOSS FORMULA......Page 190
REFERENCES......Page 191
6.1. INTRODUCTION......Page 194
6.2.1. Transmission-line Parameters......Page 196
6.2.2. Transmission-line Equations for Lossless Lines......Page 197
6.2.3. General Traveling-wave Solutions for Lossless Lines......Page 198
6.3. TRANSIENT RESPONSE OF LOSSLESS TRANSMISSION LINES......Page 201
6.3.1. Reflection Coefficient......Page 202
6.3.2. Step Response......Page 203
6.3.3. Lattice Diagram......Page 205
6.3.4. Applications......Page 206
Transmission-line Junctions......Page 207
Reactive Terminations......Page 209
Nonlinear Terminations......Page 210
Time-Domain Reflectometry......Page 211
6.4.1. Characteristics of Lossy Transmission Lines......Page 213
Impedance Transformation......Page 216
Transmission Lines as Reactive Circuit Elements......Page 219
Standing Waves......Page 221
6.4.3. The Smith Chart......Page 225
6.4.4. Impedance Matching......Page 228
Quarter-wave Transformer......Page 229
Stub Matching......Page 230
6.5. FURTHER TOPICS OF TECHNOLOGICAL IMPORTANCE AND FUTURE DIRECTIONS......Page 232
6.5.3. Chip- and Package-level Interconnects......Page 233
REFERENCES......Page 234
7.2. MODE CLASSIFICATIONS......Page 236
7.3. MODAL FIELDS AND CUTOFF FREQUENCIES......Page 238
7.4. PROPERTIES OF METAL WAVEGUIDES......Page 239
7.4.2. Wave Impedance......Page 240
7.4.3. Wave Velocities......Page 241
7.4.5. Effects of Losses......Page 242
7.5. RECTANGULAR WAVEGUIDES......Page 244
7.6. CIRCULAR WAVEGUIDES......Page 247
7.7. COAXIAL-TO-WAVEGUIDE TRANSITIONS......Page 250
7.8. COMPARATIVE SURVEY OF METAL WAVEGUIDES......Page 252
7.9.1. Cylindrical Cavity Resonators......Page 254
7.9.2. Dielectric Resonators......Page 258
FURTHER INFORMATION......Page 261
8.1. INTRODUCTION TO RADIATION......Page 264
8.2. ANTENNA TERMINOLOGY......Page 265
8.3. SIMPLE ANTENNA STRUCTURES......Page 268
8.4. ANTENNA ARRAYS AND PATTERN SYNTHESIS......Page 277
8.5. SMART ANTENNAS......Page 279
8.6. ANTENNA MEASUREMENTS......Page 282
REFERENCES......Page 284
9.1.1. Introduction......Page 286
9.1.2. Basic Principles of Operation......Page 287
9.1.3. Feeding Techniques......Page 288
9.1.5. Radiation Patterns......Page 290
9.1.6. Radiation Efficiency......Page 292
9.1.7. Bandwidth......Page 295
9.1.8. Input Impedance......Page 296
9.1.9. Improving Performance......Page 297
9.2.2. Helical Antenna......Page 300
9.2.3. Frequency Independent Antennas......Page 303
9.2.4. Spiral Antennas......Page 304
9.2.5. Log-periodic Antennas......Page 308
9.3.1. Introduction......Page 311
9.3.2. Slow-wave Antennas......Page 312
Uniform Structures......Page 316
Periodic Structures......Page 319
Two-dimensional Leaky-wave Antennas......Page 321
9.4.2. Radiation from Apertures......Page 323
9.4.3. Electrically Small Rectangular Slot......Page 326
9.4.4. Rectangular Horn Antenna......Page 327
9.4.5. Reflector Antennas......Page 331
9.5.1. Array Far Fields......Page 333
9.5.2. Array Pattern Characteristics......Page 338
9.5.3. Array Gain......Page 343
9.5.4. Array Elements......Page 346
9.5.5. Phased Array Feed and Beam-forming Systems......Page 347
9.5.6. Electronic Beamsteering......Page 349
9.5.7. Mutual Coupling......Page 352
REFERENCES......Page 353
10.1. SIGNIFICANCE OF EMC TO MODERN ENGINEERING PRACTICE......Page 356
10.2.1. Elements of EM Field Theory......Page 358
10.2.2. Treatment of Signals and Sources......Page 362
10.2.3. Circuit Analysis for EMC......Page 363
10.3.1. Penetration Through Materials......Page 364
10.3.2. Penetration Through Apertures......Page 366
10.3.3. Conducted Penetrations......Page 368
10.3.4. Radiation and Cross Talk......Page 372
10.5. EMC STANDARDS AND TECHNIQUES......Page 379
REFERENCES......Page 382
Appendix A: Some Useful Constants......Page 386
Appendix B: Some Units and Conversions......Page 388
Appendix C: Review of Vector Analysis and Coordinate Systems......Page 390