Offering an up-to-date overview of the field of aerodynamics, this edition covers many of the key concepts and topics, such as linearized supersonic flow and oblique shock and expansion waves.
Abstract: Offering an up-to-date overview of the field of aerodynamics, this edition covers many of the key concepts and topics, such as linearized supersonic flow and oblique shock and expansion waves
Content: Machine generated contents note: ch. 1 Aerodynamics: Some Introductory Thoughts --
1.1.Importance of Aerodynamics: Historical Examples --
1.2.Aerodynamics: Classification and Practical Objectives --
1.3.Road Map for This Chapter --
1.4.Some Fundamental Aerodynamic Variables --
1.4.1.Units --
1.5.Aerodynamic Forces and Moments --
1.6.Center of Pressure --
1.7.Dimensional Analysis: The Buckingham Pi Theorem --
1.8.Flow Similarity --
1.9.Fluid Statics: Buoyancy Force --
1.10.Types of Flow --
1.10.1.Continuum Versus Free Molecule Flow --
1.10.2.Inviscid Versus Viscous Flow --
1.10.3.Incompressible Versus Compressible Flows --
1.10.4.Mach Number Regimes --
1.11.Viscous Flow: Introduction to Boundary Layers --
1.12.Applied Aerodynamics: The Aerodynamic Coefficients-Their Magnitudes and Variations --
1.13.Historical Note: The Illusive Center of Pressure --
1.14.Historical Note: Aerodynamic Coefficients --
1.15.Summary --
1.16.Integrated Work Challenge: Forward-Facing Axial Aerodynamic Force on an Airfoil-Can It Happen and, If So, How? --
1.17.Problems --
ch. 2 Aerodynamics: Some Fundamental Principles and Equations --
2.1.Introduction and Road Map --
2.2.Review of Vector Relations --
2.2.1.Some Vector Algebra --
2.2.2.Typical Orthogonal Coordinate Systems --
2.2.3.Scalar and Vector Fields --
2.2.4.Scalar and Vector Products --
2.2.5.Gradient of a Scalar Field --
2.2.6.Divergence of a Vector Field --
2.2.7.Curl of a Vector Field --
2.2.8.Line Integrals --
2.2.9.Surface Integrals --
2.2.10.Volume Integrals --
2.2.11.Relations Between Line, Surface, and Volume Integrals --
2.2.12.Summary --
2.3.Models of the Fluid: Control Volumes and Fluid Elements --
2.3.1.Finite Control Volume Approach --
2.3.2.Infinitesimal Fluid Element Approach --
2.3.3.Molecular Approach --
2.3.4.Physical Meaning of the Divergence of Velocity --
2.3.5.Specification of the Flow Field --
2.4.Continuity Equation --
2.5.Momentum Equation --
2.6.An Application of the Momentum Equation: Drag of a Two-Dimensional Body --
2.6.1.Comment --
2.7.Energy Equation --
2.8.Interim Summary --
2.9.Substantial Derivative --
2.10.Fundamental Equations in Terms of the Substantial Derivative --
2.11.Pathlines, Streamlines, and Streaklines of a Flow --
2.12.Angular Velocity, Vorticity, and Strain --
2.13.Circulation --
2.14.Stream Function --
2.15.Velocity Potential --
2.16.Relationship Between the Stream Function and Velocity Potential --
2.17.How Do We Solve the Equations? --
2.17.1.Theoretical (Analytical) Solutions --
2.17.2.Numerical Solutions-Computational Fluid Dynamics (CFD) --
2.17.3.The Bigger Picture --
2.18.Summary --
2.19.Problems --
ch. 3 Fundamentals of Inviscid, Incompressible Flow --
3.1.Introduction and Road Map --
3.2.Bernoulli's Equation --
3.3.Incompressible Flow in a Duct: The Venturi and Low-Speed Wind Tunnel --
3.4.Pitot Tube: Measurement of Airspeed --
3.5.Pressure Coefficient --
3.6.Condition on Velocity for Incompressible Flow --
3.7.Governing Equation for Irrotational, Incompressible Flow: Laplace's Equation --
3.7.1.Infinity Boundary Conditions --
3.7.2.Wall Boundary Conditions --
3.8.Interim Summary --
3.9.Uniform Flow: Our First Elementary Flow --
3.10.Source Flow: Our Second Elementary Flow --
3.11.Combination of a Uniform Flow with a Source and Sink --
3.12.Doublet Flow: Our Third Elementary Flow --
3.13.Nonlifting Flow over a Circular Cylinder --
3.14.Vortex Flow: Our Fourth Elementary Flow --
3.15.Lifting Flow over a Cylinder --
3.16.The Kutta-Joukowski Theorem and the Generation of Lift --
3.17.Nonlifting Flows over Arbitrary Bodies: The Numerical Source Panel Method --
3.18.Applied Aerodynamics: The Flow over a Circular Cylinder-The Real Case --
3.19.Historical Note: Bernoulli and Euler-The Origins of Theoretical Fluid Dynamics --
3.20.Historical Note: d'Alembert and His Paradox --
3.21.Summary --
3.22.Integrated Work Challenge: Relation Between Aerodynamic Drag and the Loss of Total Pressure in the Flow Field --
3.23.Integrated Work Challenge: Conceptual Design of a Subsonic Wind Tunnel --
3.24.Problems --
ch. 4 Incompressible Flow over Airfoils --
4.1.Introduction --
4.2.Airfoil Nomenclature --
4.3.Airfoil Characteristics --
4.4.Philosophy of Theoretical Solutions for Low-Speed Flow over Airfoils: The Vortex Sheet --
4.5.The Kutta Condition --
4.5.1.Without Friction Could We Have Lift? --
4.6.Kelvin's Circulation Theorem and the Starting Vortex --
4.7.Classical Thin Airfoil Theory: The Symmetric Airfoil --
4.8.The Cambered Airfoil --
4.9.The Aerodynamic Center: Additional Considerations --
4.10.Lifting Flows over Arbitrary Bodies: The Vortex Panel Numerical Method --
4.11.Modem Low-Speed Airfoils --
4.12.Viscous Flow: Airfoil Drag --
4.12.1.Estimating Skin-Friction Drag: Laminar Flow --
4.12.2.Estimating Skin-Friction Drag: Turbulent Flow --
4.12.3.Transition --
4.12.4.Flow Separation --
4.12.5.Comment --
4.13.Applied Aerodynamics: The Flow over an Airfoil-The Real Case --
4.14.Historical Note: Early Airplane Design and the Role of Airfoil Thickness --
4.15.Historical Note: Kutta, Joukowski, and the Circulation Theory of Lift --
4.16.Summary --
4.17.Integrated Work Challenge: Wall Effects on Measurements Made in Subsonic Wind Tunnels --
4.18.Problems --
ch. 5 Incompressible Flow over Finite Wings --
5.1.Introduction: Downwash and Induced Drag --
5.2.The Vortex Filament, the Biot-Savart Law, and Helmholtz's Theorems --
5.3.Prandtl's Classical Lifting-Line Theory --
5.3.1.Elliptical Lift Distribution --
5.3.2.General Lift Distribution --
5.3.3.Effect of Aspect Ratio --
5.3.4.Physical Significance --
5.4.A Numerical Nonlinear Lifting-Line Method --
5.5.The Lifting-Surface Theory and the Vortex Lattice Numerical Method --
5.6.Applied Aerodynamics: The Delta Wing --
5.7.Historical Note: Lanchester and Prandtl-The Early Development of Finite-Wing Theory --
5.8.Historical Note: Prandtl-The Man --
5.9.Summary --
5.10.Problems --
ch. 6 Three-Dimensional Incompressible Flow --
6.1.Introduction --
6.2.Three-Dimensional Source --
6.3.Three-Dimensional Doublet --
6.4.Flow over a Sphere --
6.4.1.Comment on the Three-Dimensional Relieving Effect --
6.5.General Three-Dimensional Flows: Panel Techniques --
6.6.Applied Aerodynamics: The Flow over a Sphere-The Real Case --
6.7.Applied Aerodynamics: Airplane Lift and Drag --
6.7.1.Airplane Lift --
6.7.2.Airplane Drag --
6.7.3.Application of Computational Fluid Dynamics for the Calculation of Lift and Drag --
6.8.Summary --
6.9.Problems --
ch. 7 Compressible Flow: Some Preliminary Aspects --
7.1.Introduction --
7.2.A Brief Review of Thermodynamics --
7.2.1.Perfect Gas --
7.2.2.Internal Energy and Enthalpy --
7.2.3.First Law of Thermodynamics --
7.2.4.Entropy and the Second Law of Thermodynamics --
7.2.5.Isentropic Relations --
7.3.Definition of Compressibility --
7.4.Governing Equations for Inviscid, Compressible Flow --
7.5.Definition of Total (Stagnation) Conditions --
7.6.Some Aspects of Supersonic Flow: Shock Waves --
7.7.Summary --
7.8.Problems --
ch. 8 Normal Shock Waves and Related Topics --
8.1.Introduction --
8.2.The Basic Normal Shock Equations --
8.3.Speed of Sound --
8.3.1.Comments --
8.4.Special Forms of the Energy Equation --
8.5.When Is a Flow Compressible? --
8.6.Calculation of Normal Shock-Wave Properties --
8.6.1.Comment on the Use of Tables to Solve Compressible Flow Problems --
8.7.Measurement of Velocity in a Compressible Flow --
8.7.1.Subsonic Compressible Flow --
8.7.2.Supersonic Flow --
8.8.Summary --
8.9.Problems --
ch. 9 Oblique Shock and Expansion Waves --
9.1.Introduction --
9.2.Oblique Shock Relations --
9.3.Supersonic Flow over Wedges and Cones --
9.3.1.A Comment on Supersonic Lift and Drag Coefficients --
9.4.Shock Interactions and Reflections --
9.5.Detached Shock Wave in Front of a Blunt Body --
9.5.1.Comment on the Flow Field Behind a Curved Shock Wave: Entropy Gradients and Vorticity --
9.6.Prandtl-Meyer Expansion Waves --
9.7.Shock-Expansion Theory: Applications to Supersonic Airfoils --
9.8.A Comment on Lift and Drag Coefficients --
9.9.The X-15 and Its Wedge Tail --
9.10.Viscous Flow: Shock-Wave/ Boundary-Layer Interaction --
9.11.Historical Note: Ernst Mach-A Biographical Sketch --
9.12.Summary --
9.13.Integrated Work Challenge: Relation Between Supersonic Wave Drag and Entropy Increase-Is There a Relation? --
9.14.Integrated Work Challenge: The Sonic Boom --
9.15.Problems --
ch. 10 Compressible Flow Through Nozzles, Diffusers, and Wind Tunnels --
10.1.Introduction --
10.2.Governing Equations for Quasi-One-Dimensional Flow --
10.3.Nozzle Flows --
10.3.1.More on Mass Flow --
10.4.Diffusers --
10.5.Supersonic Wind Tunnels --
10.6.Viscous Flow: Shock-Wave/ Boundary-Layer Interaction Inside Nozzles --
10.7.Summary --
10.8.Integrated Work Challenge: Conceptual Design of a Supersonic Wind Tunnel --
10.9.Problems --
ch. 11 Subsonic Compressible Flow over Airfoils: Linear Theory --
11.1.Introduction --
11.2.The Velocity Potential Equation --
11.3.The Linearized Velocity Potential Equation --
11.4.Prandtl-Glauert Compressibility Correction --
11.5.Improved Compressibility Corrections --
11.6.Critical Mach Number --
11.6.1.A Comment on the Location of Minimum Pressure (Maximum Velocity) --
11.7.Drag-Divergence Mach Number: The Sound Barrier --
11.8.The Area Rule --
11.9.The Supercritical Airfoil --
11.10.CFD Applications: Transonic Airfoils and Wings --
11.11.Applied Aerodynamics: The Blended Wing Body --
11.12.Historical Note: High-Speed Airfoils-Early Research and Development --
11.13.Historical Note: The Origin of the Swept-Wing Concept --
11.14.Historical Note: Richard T. Whitcomb-Architect of the Area Rule and the Supercritical Wing --
11.15.Summary --
11.16.Integrated Work Challenge: Transonic Testing by the Wing-Flow Method --
11.17.Problems --
ch. 12 Linearized Supersonic Flow --
12.1.Introduction --
12.2.Derivation of the Linearized Supersonic Pressure Coefficient Formula --
12.3.Application to Supersonic Airfoils Note continued: 12.4.Viscous Flow: Supersonic Airfoil Drag --
12.5.Summary --
12.6.Problems --
ch. 13 Introduction to Numerical Techniques for Nonlinear Supersonic Flow --
13.1.Introduction: Philosophy of Computational Fluid Dynamics --
13.2.Elements of the Method of Characteristics --
13.2.1.Internal Points --
13.2.2.Wall Points --
13.3.Supersonic Nozzle Design --
13.4.Elements of Finite-Difference Methods --
13.4.1.Predictor Step --
13.4.2.Corrector Step --
13.5.The Time-Dependent Technique: Application to Supersonic Blunt Bodies --
13.5.1.Predictor Step --
13.5.2.Corrector Step --
13.6.Flow over Cones --
13.6.1.Physical Aspects of Conical Flow --
13.6.2.Quantitative Formulation --
13.6.3.Numerical Procedure --
13.6.4.Physical Aspects of Supersonic Flow over Cones --
13.7.Summary --
13.8.Problem --
ch. 14 Elements of Hypersonic Flow --
14.1.Introduction --
14.2.Qualitative Aspects of Hypersonic Flow --
14.3.Newtonian Theory --
14.4.The Lift and Drag of Wings at Hypersonic Speeds: Newtonian Results for a Flat Plate at Angle of Attack --
14.4.1.Accuracy Considerations --
14.5.Hypersonic Shock-Wave Relations and Another Look at Newtonian Theory --
14.6.Mach Number Independence --
14.7.Hypersonics and Computational Fluid Dynamics --
14.8.Hypersonic Viscous Flow: Aerodynamic Heating --
14.8.1.Aerodynamic Heating and Hypersonic Flow-The Connection --
14.8.2.Blunt Versus Slender Bodies in Hypersonic Flow --
14.8.3.Aerodynamic Heating to a Blunt Body --
14.9.Applied Hypersonic Aerodynamics: Hypersonic Waveriders --
14.9.1.Viscous-Optimized Waveriders --
14.10.Summary --
14.11.Problems --
ch. 15 Introduction to the Fundamental Principles and Equations of Viscous Flow --
15.1.Introduction --
15.2.Qualitative Aspects of Viscous Flow --
15.3.Viscosity and Thermal Conduction --
15.4.The Navier-Stokes Equations --
15.5.The Viscous Flow Energy Equation --
15.6.Similarity Parameters --
15.7.Solutions of Viscous Flows: A Preliminary Discussion --
15.8.Summary --
15.9.Problems --
ch. 16 A Special Case: Couette Flow --
16.1.Introduction --
16.2.Couette Flow: General Discussion --
16.3.Incompressible (Constant Property) Couette Flow --
16.3.1.Negligible Viscous Dissipation --
16.3.2.Equal Wall Temperatures --
16.3.3.Adiabatic Wall Conditions (Adiabatic Wall Temperature) --
16.3.4.Recovery Factor --
16.3.5.Reynolds Analogy --
16.3.6.Interim Summary --
16.4.Compressible Couette Flow --
16.4.1.Shooting Method --
16.4.2.Time-Dependent Finite-Difference Method --
16.4.3.Results for Compressible Couette Flow --
16.4.4.Some Analytical Considerations --
16.5.Summary --
ch. 17 Introduction to Boundary Layers --
17.1.Introduction --
17.2.Boundary-Layer Properties --
17.3.The Boundary-Layer Equations --
17.4.How Do We Solve the Boundary-Layer Equations? --
17.5.Summary --
ch. 18 Laminar Boundary Layers --
18.1.Introduction --
18.2.Incompressible Flow over a Flat Plate: The Blasius Solution --
18.3.Compressible Flow over a Flat Plate --
18.3.1.A Comment on Drag Variation with Velocity --
18.4.The Reference Temperature Method --
18.4.1.Recent Advances: The Meador-Smart Reference Temperature Method --
18.5.Stagnation Point Aerodynamic Heating --
18.6.Boundary Layers over Arbitrary Bodies: Finite-Difference Solution --
18.6.1.Finite-Difference Method --
18.7.Summary --
18.8.Problems --
ch. 19 Turbulent Boundary Layers --
19.1.Introduction --
19.2.Results for Turbulent Boundary Layers on a Flat Plate --
19.2.1.Reference Temperature Method for Turbulent Flow --
19.2.2.The Meador-Smart Reference Temperature Method for Turbulent Flow --
19.2.3.Prediction of Airfoil Drag --
19.3.Turbulence Modeling --
19.3.1.The Baldwin-Lomax Model --
19.4.Final Comments --
19.5.Summary --
19.6.Problems --
ch. 20 Navier-Stokes Solutions: Some Examples --
20.1.Introduction --
20.2.The Approach --
20.3.Examples of Some Solutions --
20.3.1.Flow over a Rearward-Facing Step --
20.3.2.Flow over an Airfoil --
20.3.3.Flow over a Complete Airplane --
20.3.4.Shock-Wave/Boundary-Layer Interaction --
20.3.5.Flow over an Airfoil with a Protuberance --
20.4.The Issue of Accuracy for the Prediction of Skin Friction Drag --
20.5.Summary.