Fundamental Number Theory with Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

An update of the most accessible introductory number theory text available, Fundamental Number Theory with Applications, Second Edition presents a mathematically rigorous yet easy-to-follow treatment of the fundamentals and applications of the subject. The substantial amount of reorganizing makes this edition clearer and more elementary in its coverage. New to the Second Edition •          Removal of all advanced material to be even more accessible in scope •          New fundamental material, including partition theory, generating functions, and combinatorial number theory •          Expanded coverage of random number generation, Diophantine analysis, and additive number theory •          More applications to cryptography, primality testing, and factoring •          An appendix on the recently discovered unconditional deterministic polynomial-time algorithm for primality testing Taking a truly elementary approach to number theory, this text supplies the essential material for a first course on the subject. Placed in highlighted boxes to reduce distraction from the main text, nearly 70 biographies focus on major contributors to the field. The presentation of over 1,300 entries in the index maximizes cross-referencing so students can find data with ease.

Author(s): Richard A. Mollin
Series: Discrete Mathematics and Its Applications 47
Edition: 2
Publisher: CRC Press
Year: 2008

Language: English
Pages: 380
Tags: Математика;Теория чисел;

Cover......Page 1
Title Page......Page 5
Copyright......Page 6
Contents......Page 8
Preface......Page 10
1.1 Induction......Page 12
1.2 Division......Page 27
1.3 Primes......Page 41
1.4 The Chinese Remainder Theorem......Page 51
1.5 Thue’s Theorem......Page 55
1.6 Combinatorial Number Theory......Page 60
1.7 Partitions and Generating Functions......Page 66
1.8 True Primality Tests......Page 71
1.9 Distribution of Primes......Page 76
2.1 Basic Properties......Page 84
2.2 Modular Perspective......Page 95
2.3 Arithmetic Functions: Euler, Carmichael, and Mobius......Page 101
2.4 Number and Sums of Divisors......Page 113
2.5 The Floor and the Ceiling......Page 119
2.6 Polynomial Congruences......Page 124
2.7 Primality Testing......Page 130
2.8 Cryptology......Page 138
3.1 Order......Page 150
3.2 Existence......Page 156
3.3 Indices......Page 164
3.4 Random Number Generation......Page 171
3.5 Public-Key Cryptography......Page 177
4.1 The Legendre Symbol......Page 188
4.2 The Quadratic Reciprocity Law......Page 200
4.3 Factoring......Page 212
5.1 Infinite Simple Continued Fractions......Page 220
5.2 Periodic Simple Continued Fractions......Page 232
5.3 Pell’s Equation and Surds......Page 243
5.4 Continued Fractions and Factoring......Page 251
6.1 Sums of Two Squares......Page 254
6.2 Sums of Three Squares......Page 263
6.3 Sums of Four Squares......Page 265
6.4 Sums of Cubes......Page 270
7.1 Norm-Form Equations......Page 276
7.2 The Equation ax² + by² + cz² = 0......Page 285
7.3 Bachet’s Equation......Page 288
7.4 Fermat’s Last Theorem......Page 292
Appendix A: Fundamental Facts......Page 296
Appendix B: Complexity......Page 322
Appendix C: Primes < 9547 and Least Primitive Roots......Page 324
Appendix D: Indices......Page 329
Appendix E: The ABC Conjecture......Page 330
Appendix F: Primes is in P......Page 331
Solutions to Odd-Numbered Exercises......Page 334
Bibliography......Page 362
List of Symbols......Page 366
Index......Page 367
About the Author......Page 380