Fundamental Concepts of Algebra (Pure & Applied Mathematics)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Claude C. Chevalley
Year: 1957

Language: English
Pages: 241

Contents......Page 8
Preface......Page 6
Prerequisite knowledge and terminological conventions......Page 10
1. Definition of a monoid......Page 12
2. Submonoids. Generators......Page 17
3. Homomorphisms......Page 19
4. Quotient monoids......Page 22
5. Products......Page 24
6. Free monoids......Page 27
Exercises......Page 31
1. Definition of a group......Page 33
2. Subgroups......Page 35
3. Homomorphisms. Quotient groups......Page 37
4. Groups operating on a set......Page 43
5. Products of groups......Page 47
6. Free groups......Page 48
Exercises......Page 51
1. Rings......Page 56
2. Field of quotients......Page 59
3. Modules......Page 61
4. Submodules......Page 63
5. Linear mappings......Page 70
6. Products......Page 76
7. Uniqueness theorems for semi-simple modules......Page 78
8. Tensor products of modules......Page 81
9. Free modules. Bases......Page 87
10. Multilinear mappings......Page 90
11. Transfer of basic rings......Page 104
12. Vector spaces......Page 109
13. Vector spaces in duality......Page 113
14. The rank of a linear mapping......Page 118
15. Matrices......Page 119
16. Systems of linear equations......Page 130
17. Graded modules......Page 131
Exercises......Page 135
1. Definition......Page 143
2. Subalgebras......Page 144
3. Homomorphisms......Page 145
4. Products......Page 146
5. Free algebra......Page 147
Exercises......Page 149
1. Definitions......Page 151
2. Graded algebras......Page 155
3. Tensor algebras......Page 157
4. Tensor products of graded algebras......Page 160
5. Anticommutative algebras......Page 164
6. Derivations......Page 168
7. Exterior algebras......Page 171
8. Grassmann algebras......Page 176
9. The determinant of a matrix......Page 182
10. Some applications of determinants......Page 188
11. Existence of certain derivations......Page 193
12. The trace of a matrix......Page 198
13. Alternating multilinear mappings......Page 199
14. The Pfaffian of an alternating bilinear form......Page 200
15. Exterior algebras on vector spaces......Page 206
16. Transfer of the basic ring......Page 210
17. Commutative tensor products......Page 217
18. Symmetric algebras......Page 219
19. Polynomial algebras......Page 227
Exercises......Page 234
Index......Page 244