Functional Integration And Quantum Physics

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The main theme of this book is the 'path integral technique' and its applications to constructive methods of quantum physics. The central topic is probabilistic foundations of the Feynman-Kac formula. Starting with main examples of Gaussian processes (the Brownian motion, the oscillatory process, and the Brownian bridge), the author presents four different proofs of the Feynman-Kac formula. Also included is a simple exposition of stochastic Ito calculus and its applications, in particular to the Hamiltonian of a particle in a magnetic field (the Feynman-Kac-Ito formula).Among other topics discussed are the probabilistic approach to the bound of the number of ground states of correlation inequalities (the Birman-Schwinger principle, Lieb's formula, etc.), the calculation of asymptotics for functional integrals of Laplace type (the theory of Donsker-Varadhan) and applications, scattering theory, the theory of crushed ice, and the Wiener sausage. Written with great care and containing many highly illuminating examples, this classic book is highly recommended to anyone interested in applications of functional integration to quantum physics. It can also serve as a textbook for a course in functional integration.

Author(s): Barry Simon
Series: AMS Chelsea Publishing
Edition: 2nd
Publisher: Chelsea Pub Co
Year: 2004

Language: English
Pages: 324
Tags: Stochastic Modeling Applied Mathematics Science Math Algebra Abstract Elementary Intermediate Linear Pure Fractals Quantum Theory Physics Trigonometry New Used Rental Textbooks Specialty Boutique