Functional Analysis

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Theo Bühler, Dietmar A. Salamon
Series: Graduate Studies in Mathematics 191
Publisher: American Mathematical Society
Year: 2018

Language: English
Pages: 482

Cover......Page 1
Title page......Page 4
Contents......Page 6
Preface......Page 10
Introduction......Page 12
Chapter 1. Foundations......Page 16
1.1. Metric Spaces and Compact Sets......Page 17
1.2. Finite-Dimensional Banach Spaces......Page 32
1.3. The Dual Space......Page 40
1.4. Hilbert Spaces......Page 46
1.5. Banach Algebras......Page 50
1.6. The Baire Category Theorem......Page 55
1.7. Problems......Page 60
Chapter 2. Principles of Functional Analysis......Page 64
2.1. Uniform Boundedness......Page 65
2.2. Open Mappings and Closed Graphs......Page 69
2.3. Hahn–Banach and Convexity......Page 80
2.4. Reflexive Banach Spaces......Page 95
2.5. Problems......Page 116
Chapter 3. The Weak and Weak* Topologies......Page 124
3.1. Topological Vector Spaces......Page 125
3.2. The Banach–Alaoglu Theorem......Page 139
3.3. The Banach–Dieudonné Theorem......Page 145
3.4. The Eberlein–Šmulyan Theorem......Page 149
3.5. The Kreĭn–Milman Theorem......Page 155
3.6. Ergodic Theory......Page 159
3.7. Problems......Page 168
Chapter 4. Fredholm Theory......Page 178
4.1. The Dual Operator......Page 179
4.2. Compact Operators......Page 188
4.3. Fredholm Operators......Page 194
4.4. Composition and Stability......Page 199
4.5. Problems......Page 204
Chapter 5. Spectral Theory......Page 212
5.1. Complex Banach Spaces......Page 213
5.2. Spectrum......Page 223
5.3. Operators on Hilbert Spaces......Page 237
5.4. Functional Calculus for Self-Adjoint Operators......Page 249
5.5. Gelfand Spectrum and Normal Operators......Page 261
5.6. Spectral Measures......Page 276
5.7. Cyclic Vectors......Page 296
5.8. Problems......Page 303
6.1. Unbounded Operators on Banach Spaces......Page 310
6.2. The Dual of an Unbounded Operator......Page 321
6.3. Unbounded Operators on Hilbert Spaces......Page 328
6.4. Functional Calculus and Spectral Measures......Page 341
6.5. Problems......Page 357
Chapter 7. Semigroups of Operators......Page 364
7.1. Strongly Continuous Semigroups......Page 365
7.2. The Hille–Yosida–Phillips Theorem......Page 378
7.3. The Dual Semigroup......Page 392
7.4. Analytic Semigroups......Page 403
7.5. Banach Space Valued Measurable Functions......Page 419
7.6. Inhomogeneous Equations......Page 440
7.7. Problems......Page 454
A.1. The Lemma of Zorn......Page 460
A.2. Tychonoff’s Theorem......Page 464
Bibliography......Page 468
Notation......Page 474
Index......Page 476
Back Cover......Page 482