Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.
Table of Contents
Cover
Functional Analysis, Calculus of Variations and Optimal Control
ISBN 9781447148197 ISBN 9781447148203
Preface
Contents
Part I Functional Analysis
1 Normed Spaces
1.1 Basic definitions
1.2 Linear mappings
1.3 The dual space
1.4 Derivatives, tangents, and normals
2 Convex sets and functions
2.1 Properties of convex sets
2.2 Extended-valued functions, semicontinuity
2.3 Convex functions
2.4 Separation of convex sets
3 Weak topologies
3.1 Induced topologies
3.2 The weak topology of a normed space
3.3 The weak* topology
3.4 Separable spaces
4 Convex analysis
4.1 Subdifferential calculus
4.2 Conjugate functions
4.3 Polarity
4.4 The minimax theorem
5 Banach spaces
5.1 Completeness of normed spaces
5.2 Perturbed minimization
5.3 Open mappings and surjectivity
5.4 Metric regularity
5.5 Reflexive spaces and weak compactness
6 Lebesgue spaces
6.1 Uniform convexity and duality
6.2 Measurable multifunctions
6.3 Integral functionals and semicontinuity
6.4 Weak sequential closures
7 Hilbert spaces
7.1 Basic properties
7.2 A smooth minimization principle
7.3 The proximal subdifferential
7.4 Consequences of proximal density
8 Additional exercises for Part I
Part II Optimization and Nonsmooth Analysis
9 Optimization and multipliers
9.1 The multiplier rule
9.2 The convex case
9.3 Convex duality
10 Generalized gradients
10.1 Definition and basic properties
10.2 Calculus of generalized gradients
10.3 Tangents and normals
10.4 A nonsmooth multiplier rule
11 Proximal analysis
11.1 Proximal calculus
11.2 Proximal geometry
11.3 A proximal multiplier rule
11.4 Dini and viscosity subdifferentials
12 Invariance and monotonicity
12.1 Weak invariance
12.2 Weakly decreasing systems
12.3 Strong invariance
13 Additional exercises for Part II
Part III Calculus of Variations
14 The classical theory
14.1 Necessary conditions
14.2 Conjugate points
14.3 Two variants of the basic problem
15 Nonsmooth extremals
15.1 The integral Euler equation
15.2 Regularity of Lipschitz solutions
15.3 Sufficiency by convexity
15.4 The Weierstrass necessary condition
16 Absolutely continuous solutions
16.1 Tonelli's theorem and the direct method
16.2 Regularity via growth conditions
16.3 Autonomous Lagrangians
17 The multiplier rule
17.1 A classic multiplier rule
17.2 A modern multiplier rule
17.3 The isoperimetric problem
18 Nonsmooth Lagrangians
18.1 The Lipschitz problem of Bolza
18.2 Proof of Theorem 18.1
18.3 Sufficient conditions by convexity
18.4 Generalized Tonelli-Morrey conditions
19 Hamilton-Jacobi methods
19.1 Verification functions
19.2 The logarithmic Sobolev inequality
19.3 The Hamilton-Jacobi equation
19.4 Proof of Theorem 19.11
20 Multiple integrals
20.1 The classical context
20.2 Lipschitz solutions
20.3 Hilbert-Haar theory
20.4 Solutions in Sobolev space
21 Additional exercises for Part III
Part IV Optimal Control
22 Necessary conditions
22.1 The maximum principle
22.2 A problem affine in the control
22.3 Problems with variable time
22.4 Unbounded control sets
22.5 A hybrid maximum principle
22.6 The extended maximum principle
23 Existence and regularity
23.1 Relaxed trajectories
23.2 Three existence theorems
23.3 Regularity of optimal controls
24 Inductive methods
24.1 Sufficiency by the maximum principle
24.2 Verification functions in control
24.3 Use of the Hamilton-Jacobi equation
25 Differential inclusions
25.1 A theorem for Lipschitz multifunctions
25.2 Proof of the extended maximum principle
25.3 Stratified necessary conditions
25.4 The multiplier rule and mixed constraints
26 Additional exercises for Part IV
Notes, solutions, and hints
References
Index
Author(s): Francis Clarke
Series: Graduate Texts in Mathematics
Edition: 2013
Publisher: Springer
Year: 2013
Language: English
Pages: 606
Tags: Математика;Вариационное исчисление;
Cover......Page 1
Functional Analysis, Calculus of Variations and Optimal Control......Page 4
ISBN 9781447148197 ISBN 9781447148203......Page 5
Preface......Page 8
Contents......Page 12
Part I Functional Analysis......Page 16
1.1 Basic definitions......Page 18
1.2 Linear mappings......Page 24
1.3 The dual space......Page 30
1.4 Derivatives, tangents, and normals......Page 34
2.1 Properties of convex sets......Page 42
2.2 Extended-valued functions, semicontinuity......Page 45
2.3 Convex functions......Page 47
2.4 Separation of convex sets......Page 56
3.1 Induced topologies......Page 62
3.2 The weak topology of a normed space......Page 66
3.3 The weak* topology......Page 68
3.4 Separable spaces......Page 71
4.1 Subdifferential calculus......Page 74
4.2 Conjugate functions......Page 82
4.3 Polarity......Page 86
4.4 The minimax theorem......Page 88
5.1 Completeness of normed spaces......Page 90
5.2 Perturbed minimization......Page 97
5.3 Open mappings and surjectivity......Page 102
5.4 Metric regularity......Page 105
5.5 Reflexive spaces and weak compactness......Page 111
6.1 Uniform convexity and duality......Page 120
6.2 Measurable multifunctions......Page 129
6.3 Integral functionals and semicontinuity......Page 136
6.4 Weak sequential closures......Page 143
7 Hilbert spaces......Page 148
7.1 Basic properties......Page 149
7.2 A smooth minimization principle......Page 155
7.3 The proximal subdifferential......Page 159
7.4 Consequences of proximal density......Page 166
8 Additional exercises for Part I......Page 172
Part II Optimization and Nonsmooth Analysis......Page 186
9 Optimization and multipliers......Page 188
9.1 The multiplier rule......Page 190
9.2 The convex case......Page 197
9.3 Convex duality......Page 202
10 Generalized gradients......Page 208
10.1 Definition and basic properties......Page 209
10.2 Calculus of generalized gradients......Page 214
10.3 Tangents and normals......Page 225
10.4 A nonsmooth multiplier rule......Page 236
11.1 Proximal calculus......Page 242
11.2 Proximal geometry......Page 255
11.3 A proximal multiplier rule......Page 261
11.4 Dini and viscosity subdifferentials......Page 266
12 Invariance and monotonicity......Page 270
12.1 Weak invariance......Page 271
12.2 Weakly decreasing systems......Page 279
12.3 Strong invariance......Page 282
13 Additional exercises for Part II......Page 288
Part III Calculus of Variations......Page 300
14 The classical theory......Page 302
14.1 Necessary conditions......Page 304
14.2 Conjugate points......Page 309
14.3 Two variants of the basic problem......Page 317
15 Nonsmooth extremals......Page 322
15.1 The integral Euler equation......Page 323
15.2 Regularity of Lipschitz solutions......Page 327
15.3 Sufficiency by convexity......Page 329
15.4 The Weierstrass necessary condition......Page 332
16 Absolutely continuous solutions......Page 334
16.1 Tonelli's theorem and the direct method......Page 336
16.2 Regularity via growth conditions......Page 341
16.3 Autonomous Lagrangians......Page 345
17 The multiplier rule......Page 350
17.1 A classic multiplier rule......Page 351
17.2 A modern multiplier rule......Page 353
17.3 The isoperimetric problem......Page 359
18.1 The Lipschitz problem of Bolza......Page 362
18.2 Proof of Theorem 18.1......Page 366
18.3 Sufficient conditions by convexity......Page 375
18.4 Generalized Tonelli-Morrey conditions......Page 378
19.1 Verification functions......Page 382
19.2 The logarithmic Sobolev inequality......Page 391
19.3 The Hamilton-Jacobi equation......Page 394
19.4 Proof of Theorem 19.11......Page 400
20 Multiple integrals......Page 406
20.1 The classical context......Page 407
20.2 Lipschitz solutions......Page 409
20.3 Hilbert-Haar theory......Page 413
20.4 Solutions in Sobolev space......Page 422
21 Additional exercises for Part III......Page 430
Part IV Optimal Control......Page 448
22 Necessary conditions......Page 450
22.1 The maximum principle......Page 453
22.2 A problem affine in the control......Page 460
22.3 Problems with variable time......Page 464
22.4 Unbounded control sets......Page 469
22.5 A hybrid maximum principle......Page 472
22.6 The extended maximum principle......Page 478
23.1 Relaxed trajectories......Page 488
23.2 Three existence theorems......Page 493
23.3 Regularity of optimal controls......Page 501
24.1 Sufficiency by the maximum principle......Page 506
24.2 Verification functions in control......Page 509
24.3 Use of the Hamilton-Jacobi equation......Page 515
25 Differential inclusions......Page 518
25.1 A theorem for Lipschitz multifunctions......Page 519
25.2 Proof of the extended maximum principle......Page 529
25.3 Stratified necessary conditions......Page 535
25.4 The multiplier rule and mixed constraints......Page 550
26 Additional exercises for Part IV......Page 560
Notes, solutions, and hints......Page 580
References......Page 598
Index......Page 600