Functional Analysis

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Cover FUNCTIONAL ANALYSIS Copyright © 1972 Wolters-Noordhoff Publishing ISBN: 90 0! 90980 9 Library of Congress Catalog Card Number: 75-90855 CONTENTS EDITOR'S FOREWORD TO THE RUSSIAN EDITION CHAPTER I: FUNDAMENTAL CONCEPTS OF FUNCTIONAL ANALYSIS § 1. Linear Systems 1. Concept of a linear system 2. Linear dependence and independence 3. Linear manifolds and convex sets § 2. Linear topological, metric, normed and Banach spaces 1. Linear topological space 2. Locally convex space 3. Metric linear space 4. Normed linear space 5. Examples of normed linear spaces 6. Completeness of metric spaces. Banach space 7. Compact sets 8. Separable spaces § 3. Linear functionals 1. Concept of a linear functional 2. Continuous linear functionals 3. Extension of continuous linear functionals 4. Examples of linear functionals § 4. Conjugate spaces 1. Duality of linear systems 2. Conjugate space to a normed linear space. 3. Weak and weak* topology 4. Properties of a sphere in a conjugate Banach space 5. Factor space and orthogonal complements 6. Reflexive Banach spaces § 5. Linear operators 1. Bounded linear operators 2. Examples of bounded linear operators. integral operators Interpolation theorems 3. Convergence of a sequence of operators 4. inverse operators 5. Space of operators. Ring of operators 6. Resolvent of a bounded linear operator. Spectrum 7. Adjoint operator 8. Completely continuous operators 9. Operators with an everywhere dense domain of definition. Linear equations. 10. Closed unbounded operato 11. Remark on complex spaces § 6. Spaces with a basis 1. Completeness and minimality of a system of elements. 2. Concept of a basis 3. Criteria for bases 4. Unconditional bases 5. Stability of a basis CHAPTER II: LINEAR OPERATORS IN HILBERT SPACE § 1. Abstract Hubert space 1. Concept of a Hilbert space 2. Examples of Hilbert spaces 3. Orthogonality. Projection onto a subspace 4. Linear functionals 5. Weak convergence 6. Orthonormal systems § 2. Bounded linear operators in a Hilbert space 1. Bounded linear operators. Adjoint operators. Bilinear forms 2. Unitary operators 3. Self-adjoint operators 4. Self-adjoint completely continuous operators 5. Completely continuous operators 6. Projective operators § 3. Spectral expansion of seif-adjoint operators 1. Operations on seif-adjoint opera 2. Resolution of the identity. The spectral function 3. Functions of a seif-adjoint ope 4. Unbounded seif-adjoint operators 5. Spectrum of a seif-adjoint operator. 6. Theory of perturbations 7. Multiplicity of the spectrum of a seif-adjoint operator. 8. Generalized eigenvectors. § 4. Symmetric operators 1. Concept of a symmetric operator, deficiency indices 2. SeIf-adjoint extensions of symmetric operators 3. SeIf-adjoint extensions of semi-bounded operators 4. Dissipative extensions § 5. Ordinary differential operators 1. SeIf-adjoint differential expressions 2. Regular case 3. Singular case 4. Criteria for self-adjointness of the operator Ao on (- \infinity, \infinity). 5. Nature of the spectrum of self-ac/joint extensions 6. Expansion in terms of eigenfunctions 7. Examples 8. Inverse Sturm-Liouville problem § 6. Elliptic differential operators of second order 1. Self-adjoint elliptic differential expressions 2. Minimal and maximal operators. L-harmonic functions 3. Self-adjoint extensions corresponding to basic boundary value problenis. § 7. Hubert scale of spaces 1. Hilbert scale and its properties 2. Example of a Flilbert scale. The spaces W2 3. Operators in a Hubert scale 4. Theorems about traces CHAPTER III: LINEAR DIFFERENTIAL EQUATIONS IN A BANACH SPACE § 1. Linear equations with a bounded operator 1. Linear equations of first order. Cauchy problem 2. Homogeneous equations with a constant operator 3. Case of a Hilbert space 4. Equations of second order 5. Homogeneous equation with a variable operator § 2. Equation with a constant unbounded operator. Semi-groups 1. Cauchy problem 2. Uniformly correct Cauchy problem 3. Generating operator and its resolvent 4. Weakened Cauchy problem 5. Abstract parabolic equation. Analytic semi-groups 6. Reverse Cauchy problem 7. Equations in a Hi/bert space 8. Examples of well posed problems for partial differential equations 9. Equations in a space with a basis. Continual integrals § 3. Equation with a variable unbounded operator 1. Homogeneous equation 2. Case of an operator A (t) with a variable domain of definition 3. Non-homogeneous equation 4. Fractional powers of operators CHAPTER IV: NONLINEAR OPERATOR EQUATIONS Introductory remarks § 1. Nonlinear operators and functionals 1. Continuity and boundedness of an operator 2. Differentiability of a nonlinear operator 3. Integration of abstract functions 4. Urysohn operator in the spaces C and Lp 5. Operator f. 6. Hammerstein operator 7. Derivatives of higher order 8. Potential operators § 2. Existence of solutions 1. Method of successive approximations 2. Principle of contractive mappings 3. Uniqueness of a solution 4. Equations with completely continuous operators. Schauder principle 5. Use of the theory of completely continuous vector fields 6. Variational method. 7. Transformation of equations 8. Examples. Decomposition of operators. § 3. Qualitative methods in the theory of branching of solutions 1. Extension of solutions, implicit function theorem 2. Branch points 3. Points of bifurcation, linearization principle 4. Examples from mechanics. 5. Equations with potential operators 6. Appearance of large solutions 7. Equation of branching 8. Construction of solutions in the form of a series CHAPTER V: OPERATORS IN SPACES WITH A CONE § 1. Cones in linear spaces 1. Cone in a linear system 2. Partially ordered spaces 3. Vector lattices, minihedral cones 4. K-spaces 5. Cones in a Banach space 6. Regular cones 7. Theorems on the realization of partially ordered spaces § 2. Positive linear functionals 1. Positive functionals 2. Extension of positive linear fun ctionals 3. Uniformly positive fun ctionals 4. Bounded functionals on a cone § 3. Positive linear operators 1. Concept of a positive operator 2. Affirmative eigenvalues 3. Positive operators on a minihedral cone 4. Non-homogeneous linear equation 5. invariant functionals and eigenvectors of conjugate operators 6. Inconsistent inequalities § 4. Nonlinear operators 1. Basic concepts 2. Existence of positive solutions 3. Existence of a non-zero positive solution 4. Concave operators 5. Convergence of successive approximations CHAPTER VI: COMMUTATIVE NORMED RINGS (BANACH ALGEBRAS) § 1. Basic concepts 1. Commutative normed rings.*) 2. Examples of normed rings 3. Normed fields. 4. Maximal ideals and multiplicative functionals 5. Maximal ideal space 6. Ring boundary of the space R 7. Analytic functions on a ring 8. Invariant subspaces of R'. 9. Rings with involution § 2. Group rings. Harmonic analysis 1. Group rings 2. The characters of a discrete group and maximal ideals of a group ring. 3. Compact groups. Principle of duality 4. Locally compact groups 5. Fourier transforms 6. Hypercomplex systems § 3. Regular rings 1. Regular rings 2. Closed ideals 3. The ring C(S) and its subrings CHAPTER VII: OPERATORS OF QUANTUM MECHANICS § 1. General statements of quantum mechanics 1. State and physical magnitudes of a quantum-mechanical system. Representations of algebraic systems 3. Coordinates and impulses 4. Energy operator. Schrôdinger equation 5. Concrete quantum-mechanical systems 6. Transition from quantum mechanics to classica/ mechanics. § 2. Self-adjointness and the spectrum of the energy operator 1. Criterion for self-adjointness 2. Nature of the spectrum of a radial Schrädinger operator 3. Nature of the spectrum of a one-dimensional Schrödinger operator 4. Nature of the spectrum of a three-dimensional Schrodinger operator § 3. Discrete spectrum, eigenfunctions 1. Exact solutions 2. General properties of the solutions of the Schrödinger equation 3. Quasi-classical approximation for solutions of the one-dimensional Schrödinger equation 4. Calculation of eigen values in one-dimensional and radial symmetric cases 5. Perturbation theory § 4. Solution of the Cauchy problem for the Schrödinger equation 1. General information 2. Theory of perturbations. 3. Physical interpretation 4. Quasi-classical asymptotics of the Green's function 5. Passage to the limit as h—> 0 6. Quasi-classical asyniptotics of a solution of the Dirac equation § 5. Continuous spectrum of the energy operator and the problem of scattering 1. Formulation of the problem 2. Basis for the formulation of the problem and its solution 3. Amplitude of scattering and its equation 4. Case of spherical symmetry 5. General case 6. inverse problem of the theory of scattering CHAPTER VIII: GENERALIZED FUNCTIONS § 1. Generalized functions and operations on them 1. Introductory remarks 2. Notation 3. Generalized functions 4. Operations on generalized functions 5. Differentiation and integration of generalized functions. 6. Limit of a sequence of generalized functions 7. Local properties of generalized functions 8. Direct product of generalized functions 9. Convolution of generalized functions 10. Genera/form of generalized functions 11. Kernel Theorem § 2. Generalized functions and divergent integrals 1. Regularization of divergent integrals 2. Regularization of the functions x^2, x^3, x^-n and their linear combinations 3. Regularization of functions with algebraic singularities 4. Regularization on a finite segment. 5. Regularization at infinity 6. Non-canonical regularizations 7. Generalized functions x^2+, x^2_, and functions which are analogous tothem as function of the parameter \lambda. 8. Homogeneous generalized functions 9. Table of derivatives of some generalized functions 10. Differentiation and integration of arbitrary order 11. Expression of some special functions in the form of derivatives of fractional order. § 3. Some generalized functions of several variables 1. The generalized function r^\lambda 2. Generalized functions connected with quadratic forms 3. Generalizedfunctions (P+iO)^\lambda and (P—iO)^\lambda. 4. Generalized functions of the form 5. Generalized functions on smooth surfaces § 4. Fourier transformation of generalized functions 1. The space S and generalized functions of exponential growth. 2. Fourier transformation of generalizedfunctions of exponential growth 3. Fourier transformation of arbitrary generalized functions 4. Table of Fourier transforms of generalized functions of one variable. 6. Positive definite generalized functions § 5. Radon transformation 1. Radon transformation of test functions and its properties 2. Radon transformation of generalized functions § 6. Generalized functions and differential equations 1. Fundamental solutions 2. Fundamental solutions for some differential equations 3. Construction of fundamental solutions for elliptic equations 4. Fundamental solutions of homogeneous regular equations 5. Fundamental solution of the Cauchy problem § 7. Generalized functions in a complex space 1. Generalizedfunctions of one complex variable 2. Generalized functions of m complex variables BIBLIOGRAPHY INDEX OF LITERATURE ACCORDING TO CHAPTERS

Author(s): N. Ya. Vilenkin, R. E. Flaherty
Publisher: Wolters-Noordhoff B.V.
Year: 1972

Language: English
Pages: 397

Cover......Page 1
FUNCTIONAL ANALYSIS......Page 4
Library of Congress Catalog Card Number: 75-90855......Page 5
CONTENTS......Page 6
EDITOR'S FOREWORD TO THE RUSSIAN EDITION......Page 14
1. Concept of a linear system......Page 18
2. Linear dependence and independence......Page 19
1. Linear topological space......Page 20
2. Locally convex space......Page 22
3. Metric linear space......Page 23
4. Normed linear space......Page 24
5. Examples of normed linear spaces......Page 27
6. Completeness of metric spaces. Banach space......Page 31
7. Compact sets......Page 33
2. Continuous linear functionals......Page 36
3. Extension of continuous linear functionals......Page 37
4. Examples of linear functionals......Page 38
1. Duality of linear systems......Page 39
2. Conjugate space to a normed linear space.......Page 40
3. Weak and weak* topology......Page 44
4. Properties of a sphere in a conjugate Banach space......Page 45
5. Factor space and orthogonal complements......Page 46
6. Reflexive Banach spaces......Page 47
1. Bounded linear operators......Page 48
2. Examples of bounded linear operators. integral operators Interpolation theorems......Page 50
3. Convergence of a sequence of operators......Page 54
4. inverse operators......Page 55
6. Resolvent of a bounded linear operator. Spectrum......Page 56
7. Adjoint operator......Page 59
8. Completely continuous operators......Page 60
9. Operators with an everywhere dense domain of definition. Linear equations.......Page 64
10. Closed unbounded operato......Page 65
1. Completeness and minimality of a system of elements.......Page 68
2. Concept of a basis......Page 69
3. Criteria for bases......Page 71
4. Unconditional bases......Page 72
5. Stability of a basis......Page 73
2. Examples of Hilbert spaces......Page 74
3. Orthogonality. Projection onto a subspace......Page 76
4. Linear functionals......Page 77
6. Orthonormal systems......Page 78
1. Bounded linear operators. Adjoint operators. Bilinear forms......Page 80
2. Unitary operators......Page 82
3. Self-adjoint operators......Page 84
4. Self-adjoint completely continuous operators......Page 85
5. Completely continuous operators......Page 87
6. Projective operators......Page 90
1. Operations on seif-adjoint opera......Page 92
2. Resolution of the identity. The spectral function......Page 94
3. Functions of a seif-adjoint ope......Page 95
4. Unbounded seif-adjoint operators......Page 96
5. Spectrum of a seif-adjoint operator.......Page 98
6. Theory of perturbations......Page 99
7. Multiplicity of the spectrum of a seif-adjoint operator.......Page 102
8. Generalized eigenvectors.......Page 105
1. Concept of a symmetric operator, deficiency indices......Page 107
2. SeIf-adjoint extensions of symmetric operators......Page 108
3. SeIf-adjoint extensions of semi-bounded operators......Page 109
4. Dissipative extensions......Page 112
1. SeIf-adjoint differential expressions......Page 113
2. Regular case......Page 115
3. Singular case......Page 116
4. Criteria for self-adjointness of the operator Ao on (- \infinity, \infinity).......Page 118
6. Expansion in terms of eigenfunctions......Page 119
7. Examples......Page 122
8. Inverse Sturm-Liouville problem......Page 124
1. Self-adjoint elliptic differential expressions......Page 125
2. Minimal and maximal operators. L-harmonic functions......Page 126
3. Self-adjoint extensions corresponding to basic boundary value problenis.......Page 127
1. Hilbert scale and its properties......Page 130
2. Example of a Flilbert scale. The spaces W2......Page 131
3. Operators in a Hubert scale......Page 133
4. Theorems about traces......Page 134
2. Homogeneous equations with a constant operator......Page 136
3. Case of a Hilbert space......Page 138
5. Homogeneous equation with a variable operator......Page 139
1. Cauchy problem......Page 146
2. Uniformly correct Cauchy problem......Page 147
3. Generating operator and its resolvent......Page 149
4. Weakened Cauchy problem......Page 151
5. Abstract parabolic equation. Analytic semi-groups......Page 153
6. Reverse Cauchy problem......Page 154
7. Equations in a Hi/bert space......Page 156
8. Examples of well posed problems for partial differential equations......Page 159
9. Equations in a space with a basis. Continual integrals......Page 164
1. Homogeneous equation......Page 168
2. Case of an operator A (t) with a variable domain of definition......Page 170
3. Non-homogeneous equation......Page 171
4. Fractional powers of operators......Page 172
Introductory remarks......Page 175
1. Continuity and boundedness of an operator......Page 176
2. Differentiability of a nonlinear operator......Page 177
3. Integration of abstract functions......Page 179
4. Urysohn operator in the spaces C and Lp......Page 181
6. Hammerstein operator......Page 184
7. Derivatives of higher order......Page 185
8. Potential operators......Page 187
1. Method of successive approximations......Page 189
2. Principle of contractive mappings......Page 190
3. Uniqueness of a solution......Page 191
4. Equations with completely continuous operators. Schauder principle......Page 192
5. Use of the theory of completely continuous vector fields......Page 193
7. Transformation of equations......Page 196
8. Examples. Decomposition of operators.......Page 197
§ 3. Qualitative methods in the theory of branching of solutions......Page 200
2. Branch points......Page 201
3. Points of bifurcation, linearization principle......Page 203
4. Examples from mechanics.......Page 206
5. Equations with potential operators......Page 210
7. Equation of branching......Page 211
8. Construction of solutions in the form of a series......Page 212
1. Cone in a linear system......Page 215
2. Partially ordered spaces......Page 216
3. Vector lattices, minihedral cones......Page 217
4. K-spaces......Page 218
5. Cones in a Banach space......Page 219
6. Regular cones......Page 221
1. Positive functionals......Page 223
2. Extension of positive linear fun ctionals......Page 225
4. Bounded functionals on a cone......Page 226
1. Concept of a positive operator......Page 227
2. Affirmative eigenvalues......Page 228
3. Positive operators on a minihedral cone......Page 230
5. invariant functionals and eigenvectors of conjugate operators......Page 232
6. Inconsistent inequalities......Page 233
1. Basic concepts......Page 234
2. Existence of positive solutions......Page 235
3. Existence of a non-zero positive solution......Page 236
4. Concave operators......Page 237
5. Convergence of successive approximations......Page 238
2. Examples of normed rings......Page 239
4. Maximal ideals and multiplicative functionals......Page 242
5. Maximal ideal space......Page 244
7. Analytic functions on a ring......Page 245
9. Rings with involution......Page 247
1. Group rings......Page 248
2. The characters of a discrete group and maximal ideals of a group ring.......Page 250
3. Compact groups. Principle of duality......Page 252
4. Locally compact groups......Page 253
5. Fourier transforms......Page 254
6. Hypercomplex systems......Page 255
1. Regular rings......Page 256
3. The ring C(S) and its subrings......Page 258
Representations of algebraic systems......Page 260
3. Coordinates and impulses......Page 261
4. Energy operator. Schrôdinger equation......Page 263
5. Concrete quantum-mechanical systems......Page 265
6. Transition from quantum mechanics to classica/ mechanics.......Page 266
1. Criterion for self-adjointness......Page 269
2. Nature of the spectrum of a radial Schrädinger operator......Page 271
3. Nature of the spectrum of a one-dimensional Schrödinger operator......Page 272
4. Nature of the spectrum of a three-dimensional Schrodinger operator......Page 273
1. Exact solutions......Page 274
2. General properties of the solutions of the Schrödinger equation......Page 277
3. Quasi-classical approximation for solutions of the one-dimensional Schrödinger equation......Page 278
4. Calculation of eigen values in one-dimensional and radial symmetric cases......Page 281
5. Perturbation theory......Page 283
1. General information......Page 285
2. Theory of perturbations.......Page 286
3. Physical interpretation......Page 287
4. Quasi-classical asymptotics of the Green's function......Page 288
5. Passage to the limit as h—> 0......Page 290
6. Quasi-classical asyniptotics of a solution of the Dirac equation......Page 291
§ 5. Continuous spectrum of the energy operator and the problem of scattering......Page 294
1. Formulation of the problem......Page 295
2. Basis for the formulation of the problem and its solution......Page 296
3. Amplitude of scattering and its equation......Page 298
4. Case of spherical symmetry......Page 299
5. General case......Page 301
6. inverse problem of the theory of scattering......Page 302
1. Introductory remarks......Page 305
2. Notation......Page 306
3. Generalized functions......Page 307
4. Operations on generalized functions......Page 309
5. Differentiation and integration of generalized functions.......Page 310
6. Limit of a sequence of generalized functions......Page 312
7. Local properties of generalized functions......Page 314
8. Direct product of generalized functions......Page 315
9. Convolution of generalized functions......Page 316
10. Genera/form of generalized functions......Page 318
1. Regularization of divergent integrals......Page 319
2. Regularization of the functions x^2, x^3, x^-n and their linear combinations......Page 322
3. Regularization of functions with algebraic singularities......Page 325
4. Regularization on a finite segment.......Page 327
5. Regularization at infinity......Page 329
6. Non-canonical regularizations......Page 330
7. Generalized functions x^2+, x^2_, and functions which are analogous tothem as function of the parameter \lambda.......Page 333
8. Homogeneous generalized functions......Page 336
9. Table of derivatives of some generalized functions......Page 337
10. Differentiation and integration of arbitrary order......Page 338
11. Expression of some special functions in the form of derivatives of fractional order.......Page 339
1. The generalized function r^\lambda......Page 340
2. Generalized functions connected with quadratic forms......Page 343
3. Generalizedfunctions (P+iO)^\lambda and (P—iO)^\lambda.......Page 345
4. Generalized functions of the form......Page 346
5. Generalized functions on smooth surfaces......Page 348
1. The space S and generalized functions of exponential growth.......Page 351
2. Fourier transformation of generalizedfunctions of exponential growth......Page 352
3. Fourier transformation of arbitrary generalized functions......Page 354
4. Table of Fourier transforms of generalized functions of one variable.......Page 355
6. Positive definite generalized functions......Page 360
1. Radon transformation of test functions and its properties......Page 366
2. Radon transformation of generalized functions......Page 367
1. Fundamental solutions......Page 369
2. Fundamental solutions for some differential equations......Page 377
3. Construction of fundamental solutions for elliptic equations......Page 378
4. Fundamental solutions of homogeneous regular equations......Page 381
5. Fundamental solution of the Cauchy problem......Page 382
1. Generalizedfunctions of one complex variable......Page 385
2. Generalized functions of m complex variables......Page 389
BIBLIOGRAPHY......Page 394
INDEX OF LITERATURE ACCORDING TO CHAPTERS......Page 397