Fuel cells are expected to play a major role in the future power supply that will transform to renewable, decentralized and fluctuating primary energies. At the same time the share of electric power will continually increase at the expense of thermal and mechanical energy not just in transportation, but also in households. Hydrogen as a perfect fuel for fuel cells and an outstanding and efficient means of bulk storage for renewable energy will spearhead this development together with fuel cells. Moreover, small fuel cells hold great potential for portable devices such as gadgets and medical applications such as pacemakers. This handbook will explore specific fuel cells within and beyond the mainstream development and focuses on materials and production processes for both SOFC and lowtemperature fuel cells, analytics and diagnostics for fuel cells, modeling and simulation as well as balance of plant design and components. As fuel cells are getting increasingly sophisticated and industrially developed the issues of quality assurance and methodology of development are included in this handbook. The contributions to this book come from an international panel of experts from academia, industry, institutions and government. This handbook is oriented toward people looking for detailed information on specific fuel cell types, their materials, production processes,modeling and analytics. Overview information on the contrary on mainstream fuel cells and applications are provided in the book'Hydrogen and Fuel Cells', published in 2010.
Author(s): Detlef Stolten, Bernd Emonts
Edition: 1
Publisher: Wiley-VCH
Year: 2012
Language: English
Pages: 1268
Tags: Химия и химическая промышленность;Электрохимия;Химические источники тока;Химия и технология топливных элементов;
Fuel Cell Science and Engineering......Page 3
Contents to Volume......Page 7
List of Contributors......Page 21
Part I Technology......Page 29
1.1 Introduction......Page 31
1.2.1 Tubular Concepts......Page 32
1.2.2 Planar Designs......Page 34
1.2.3 Actors and Major Areas of Development......Page 36
1.2.4 State of Cell and Stack Developments......Page 38
1.3.1 Actors and Major Areas of Development......Page 39
1.4 Representative Research Findings for DMFCs......Page 40
1.4.1 DMFCs for Portable Applications......Page 41
1.4.2 DMFCs for Light Traction......Page 42
1.5.1 Fuel Cells and Batteries for Propulsion......Page 45
1.5.2 On-Board Power Supply with Fuel Cells......Page 50
1.6.1 Stationary Applications in Building Technology......Page 52
1.7 Special Markets for Fuel Cells......Page 54
1.8.2 DMFC Battery Chargers......Page 55
1.8.3 Uninterruptable Power Supply/Backup Power......Page 57
1.9 Conclusion......Page 58
References......Page 60
2.1 Introduction......Page 71
2.2.1 Basic Principles of Single-Chamber Fuel Cell Operation......Page 72
2.2.2 Catalysis in SC-SOFCs......Page 74
2.2.3 Heat Production and Real Cell Temperature......Page 75
2.2.6 Anode Materials......Page 76
2.2.7 Cathode Materials......Page 77
2.3.1 Electrolyte-Supported SC-SOFCs......Page 78
2.3.2 Anode-Supported SC-SOFCs......Page 79
2.3.3.1 Cell Performance......Page 80
2.3.3.2 Miniaturization......Page 84
2.3.3.3 Limitations and Challenges......Page 85
2.3.4 Fully Porous SC-SOFCs......Page 87
2.4 Applications of SC-SOFCs Systems......Page 88
References......Page 89
3.1.1 Operating Principle......Page 95
3.1.2 Operating Conditions......Page 97
3.1.3 Geometry and Materials......Page 98
3.1.4 Reforming......Page 99
3.1.5 Balance of Plant......Page 101
3.1.7 State of the Art......Page 103
3.2.1 Approach......Page 104
3.2.2 Technology Optimization......Page 107
3.2.3 Scientific Knowledge......Page 109
3.3.1 Distributed Generation......Page 114
3.3.2 Carbon Capture, Storage, and Transportation......Page 115
3.3.4 Renewable Fuels......Page 117
3.4 Conclusion......Page 118
List of Symbols......Page 119
References......Page 120
4.1 Historical Introduction and Principle......Page 125
4.2 Concepts of Alkaline Fuel-Cell Design Concepts......Page 127
4.2.2 Eloflux Cell Design......Page 128
4.2.4 Bipolar Stack Concept by DLR......Page 129
4.2.5 Hydrocell Concept......Page 130
4.2.6 Ovonics Concept......Page 131
4.2.8 Alkaline Direct Ethanol Fuel Cells Assembled with a Non-Platinum Catalyst......Page 132
4.2.9 PTFE-Bonded Gas Diffusion Electrodes......Page 133
4.2.10.1 Preparation and Electrode Materials......Page 134
4.2.10.2 Dry Preparation of PTFE-Bonded Gas Diffusion Electrodes......Page 136
4.2.11 Reduction of NiO......Page 139
4.3 Electrolytes and Separators......Page 141
4.4.1 Gas Diffusion Electrodes with Raney Nickel Catalysts......Page 142
4.4.2 Gas Diffusion Electrodes with Silver Catalysts......Page 149
4.5 Carbon Dioxide Behavior......Page 151
References......Page 154
5.1 Introduction......Page 159
5.2 Physical Principles of Polymer Electrolyte Membrane Fuel Cells (PEMFCs)......Page 160
5.3.1 Hydrogen-Fed Micro Fuel Cell......Page 162
5.3.3 Direct Methanol Fuel Cell (DMFC)......Page 163
5.3.4 Direct Ethanol Fuel Cell (DEFC)......Page 164
5.4.1 Miniaturization......Page 165
5.5 GDL Optimization......Page 166
5.5.1 Flow-Field Design......Page 167
5.5.2 Miniaturized DMFC......Page 169
5.6 Conclusion......Page 170
References......Page 171
6.1 Introduction......Page 175
6.2.1 Electrode Materials......Page 177
6.2.3 Configurations and Design......Page 179
6.2.4.2 Electrochemical Measurements......Page 180
6.2.4.3 Reporting Performance......Page 184
6.3.1 Anode Reactions......Page 185
6.3.1.2 Biocatalysis......Page 186
6.3.1.3 Electron-Transfer Mechanisms......Page 187
6.3.2 Cathode Reactions......Page 188
6.3.2.2 Electron-Transfer Mechanisms......Page 189
6.3.3 Pure Cultures and Mixed Microbial Communities......Page 190
6.3.5 Biological Limitations......Page 191
6.4.1.1 Wastewater Treatment......Page 192
6.4.1.3 Electro-Assisted Anaerobic Digestion......Page 196
6.4.2.1 Desalination......Page 197
6.4.2.3 Organic Alcohols and Acids......Page 198
6.4.3.2 Greenhouse Gas Mitigation......Page 199
6.4.3.4 Biosensors and Environmental Monitoring......Page 200
Acknowledgments......Page 201
References......Page 202
7.2 Heat and Mass Transfer in Micro-Reactors......Page 213
7.3 Specific Features Required from Catalyst Formulations for Microchannel Plate Heat-Exchanger Reactors......Page 216
7.4 Heat Management of Microchannel Plate Heat-Exchanger Reactors......Page 218
7.4.1 Reforming......Page 219
7.4.2 Water Gas Shift Reaction......Page 223
7.4.3 Preferential Oxidation of Carbon Monoxide......Page 225
7.4.4 Selective Methanation of Carbon Monoxide......Page 228
7.5 Examples of Complete Microchannel Fuel Processors......Page 229
7.6.1 Choice of Construction Material......Page 234
7.6.2 Micromachining Techniques......Page 235
7.6.3 Sealing Techniques......Page 237
7.6.5 Catalyst Coating Techniques......Page 238
References......Page 240
8.1 Introduction......Page 247
8.2 Principles......Page 248
8.3 History......Page 250
8.4 Thermodynamics......Page 251
8.5.1 Electrodes for Alkaline Electrolytes......Page 254
8.5.1.2 Alkaline Electrolysis......Page 255
8.5.1.3 Alkaline URFCs......Page 256
8.5.2 Polymer Electrolyte Membrane (PEM)......Page 257
8.5.2.1 PEM Electrolyzers......Page 258
8.5.2.3 PEM URFC......Page 259
8.6 Solid Oxide Electrolyte (SOE)......Page 261
8.7 System Design and Components......Page 262
8.8 Applications and Systems......Page 264
8.8.1 Stationary Systems for Seasonal Energy Storage......Page 265
8.8.2 RFC Systems for Aviation Applications......Page 267
8.9 Conclusion and Prospects......Page 268
References......Page 269
Part II Materials and Production Processes......Page 275
9.1 Introduction......Page 277
9.2.1.1 1995–1998......Page 278
9.2.1.2 1998–2002......Page 280
9.2.1.3 2002–2005......Page 282
9.2.2.1 2000–2006......Page 287
9.2.2.2 2006–2010......Page 294
9.2.3 Advances in Testing of SOFCs......Page 296
9.2.3.1 Testing Housing......Page 297
9.2.3.3 SOFC Testing Procedure......Page 298
References......Page 300
10.2 SOFC and Electrochemical Fundamentals......Page 303
10.3.1 Methods for Coating Electrode Materials......Page 304
10.4 Electrode Materials......Page 306
10.4.1 Anode Materials......Page 308
10.5.1 Motivation for Infiltration......Page 309
10.5.2 Infiltration Applications......Page 310
10.5.2.1 Anodes Produced by Infiltration......Page 312
10.5.2.2 Cathodes Produced by Infiltration......Page 318
10.6 Conclusion......Page 323
References......Page 325
11.1.1 Solid Oxide Fuel Cells (SOFCs)......Page 329
11.1.2 Functional Requirements for pSOFC Seals......Page 332
11.2 Sealing Techniques......Page 334
11.2.1 Rigid Bonded Seals......Page 336
11.2.1.1 Glass and Glass–Ceramic Sealants......Page 337
11.2.1.2 Ceramic Seals......Page 346
11.2.2 Compressive Seals......Page 347
11.2.2.2 Mica-Based Seals......Page 348
11.2.2.3 Hybrid Mica Seals......Page 349
11.2.3 Bonded Compliant Seals......Page 351
11.2.3.1 Brazing......Page 352
11.2.3.2 Bonded Compliant Seal Concept......Page 355
11.3 Conclusion......Page 356
References......Page 357
12.1 Introduction......Page 363
12.2.2 Acidity and Protolytic Equilibria......Page 365
12.2.3 Composition Specifications and Condensation Equilibria......Page 366
12.3.1 Number of Independent Variables, Gibb’s Phase Rule......Page 367
12.3.2 Evaluated Literature Data for the Vapor Pressure of Phosphoric Acid in the Temperature Range between 25 and 170ºC......Page 368
12.4.2 Evaluated Literature Data for the (Proton) Conductivity of (Aqueous) Phosphoric Acid in the Temperature Range Between 0 and 170ºC......Page 372
12.4.3 Non-Arrhenius Behavior for the Ionic Transport......Page 374
12.4.4 Enthalpy of Activation for the Ionic Transport......Page 378
12.4.5 Evaluated Data for the Dynamic Viscosity of Aqueous Phosphoric in the Temperature Range from 23 to 170ºC......Page 380
12.5 Equilibria between the Polyphosphoric Acid Species and ‘‘Composition’’ of Concentrated Phosphoric Acid......Page 381
12.5.1 Evaluated Literature Data for the Polyphosphoric Acid Equilibria......Page 382
12.6 Conclusion......Page 384
References......Page 385
13.1 Introduction......Page 389
13.2.1 Bare Metallic Bipolar Plates......Page 391
13.2.2 Light Alloys......Page 394
13.2.3 Coated Stainless-Steel Bipolar Plates......Page 396
13.3 Discussion and Perspective......Page 398
13.3.1 Substrate Selection......Page 399
13.3.2 Coatings and Surface Modification......Page 400
References......Page 402
14.1 Introduction......Page 407
14.2 The Fuel Cell and Its System......Page 408
14.3 Triple Phase Boundary......Page 410
14.4 Electrodes to Oxidize Hydrogen......Page 412
14.5 Membranes to Transport Ions......Page 416
14.6 Electrocatalysts to Reduce Oxygen......Page 421
14.7 Catalyst Supports to Conduct Electrons......Page 425
14.8 Future Directions......Page 430
References......Page 431
15.1 Introduction......Page 435
15.2 Electrocatalysis in Fuel Cells......Page 436
15.2.1 Oxygen Reduction in PEMFCs......Page 438
15.2.1.1 Platinum-Based Catalysts......Page 439
15.2.1.4 Metal/N/C Catalysts......Page 443
15.2.2.1 Direct Fuel Cells......Page 445
15.2.3 Hydrogen Oxidation and CO Poisoning......Page 446
15.2.4 Catalysis in Direct Fuel Cells......Page 448
15.3 Electrocatalyst Degradation......Page 449
15.4 Novel Support Materials......Page 450
15.5 Catalyst Development, Characterization, and In Situ Studies in Fuel Cells......Page 451
15.6 Catalysis in Hydrogen Production for Fuel Cells......Page 452
15.6.1.1 Introduction......Page 453
15.6.1.2 Catalytic Steam Reforming (SR)......Page 454
15.6.1.3 Catalytic Partial Oxidation (CPO)......Page 455
15.6.1.4 Autothermal Reforming (ATR)......Page 456
15.6.2 Carbon Monoxide Removal......Page 457
15.6.3 Catalysis in the Production of Hydrogen from Biomass......Page 458
References......Page 459
Part III Analytics and Diagnostics......Page 467
16.1 Introduction......Page 469
16.2.1 Principle of Electrochemical Impedance Spectroscopy......Page 471
16.2.1.1 Operating Principle of Frequency Response Analyzers......Page 473
16.2.2.1 Evaluation of Data Quality......Page 474
16.2.2.2 Complex Nonlinear Least-Squares (CNLS) Fit......Page 475
16.2.2.3 Distribution Function of Relaxation Times (DRT)......Page 478
16.3 Experimental Examples......Page 480
16.3.1 Process Identification......Page 481
16.3.1.1 Variation of Temperature......Page 482
16.3.1.2 Variation of Anodic Water Partial Pressure......Page 483
16.3.1.3 Variation of Cathodic Oxygen Partial Pressure......Page 484
16.3.1.4 Conclusions......Page 485
16.3.2 Equivalent Circuit Model Definition and Validation......Page 486
16.3.2.1 Cathodic Oxygen Partial Pressure Dependence......Page 488
16.3.2.2 Anodic Water Partial Pressure Dependence......Page 489
16.3.2.3 Thermal Activation......Page 490
16.3.2.4 Conclusions......Page 492
16.4 Conclusion......Page 493
References......Page 494
17.1 Introduction......Page 497
17.1.1 Reasons for Post-Test Analysis......Page 498
17.1.2 Methods of Post-Test Analysis......Page 499
17.2 Stack Dissection......Page 500
17.2.1 Thermography......Page 501
17.2.2 Stack Embedding......Page 502
17.2.3 Photography and Distance Measurements......Page 503
17.2.4 Optical Microscopy......Page 505
17.2.6 Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Analysis......Page 510
17.2.7 X-Ray Diffraction (XRD)......Page 512
17.2.8 Wet Chemical Analysis......Page 514
17.2.10 Lessons Learned from Post-Test Stack Dissection and Analysis......Page 516
17.3 Conclusion and Outlook......Page 517
Acknowledgments......Page 518
References......Page 519
18.1 Introduction......Page 521
18.2.1 Complementarity of X-Rays and Neutrons......Page 522
18.2.2.2 Synchrotron X-Ray Sources and X-Ray Tubes......Page 524
18.2.2.3 Tomography and Tomographic Reconstruction......Page 525
18.2.2.4 Artifacts......Page 526
18.2.2.5 Image Normalization Procedure......Page 527
18.3.1.1 X-Rays......Page 528
18.3.1.2 Neutron Radiography......Page 532
18.3.2 DMFCs......Page 535
18.3.2.1 CO2 Evolution Visualized by Means of Synchrotron X-Ray Radiography......Page 536
18.3.2.2 Combined Approach of Neutron Radiography and Local Current Density Measurements......Page 537
18.3.3 HT-PEFCs......Page 539
18.4.1 Neutron Tomography......Page 541
18.4.2 Synchrotron X-Ray Tomography......Page 542
18.5 Conclusion......Page 545
References......Page 546
19.1 Introduction......Page 549
19.2 Gravimetric Properties......Page 552
19.3 Caloric Properties......Page 555
19.4 Structural Information: Porosity......Page 558
19.5 Mechanical Properties......Page 559
19.6 Conclusion......Page 563
References......Page 564
20.1 Introduction......Page 571
20.2.1 Reference Electrode......Page 574
20.2.2 Current Density Distribution......Page 576
20.2.3 Cyclic Voltammetry......Page 577
20.3 Dynamic Operation at Standard Conditions......Page 578
20.4.1 Overall Hydrogen Starvation......Page 581
20.4.2 Hydrogen Starvation During Start-up/Shut-down......Page 583
20.4.3 Local Hydrogen Starvation......Page 586
20.4.4 Oxygen Starvation......Page 589
20.5 Mitigation......Page 590
20.5.2 Operation Strategies......Page 591
References......Page 593
Part IV Quality Assurance......Page 599
21.1 Introduction......Page 601
21.2.2.1 Setting the Test Conditions (Test Inputs)......Page 602
21.2.2.2 Measuring the Test Outputs......Page 605
21.2.3.2 Measuring the Test Outputs......Page 606
21.2.3.3 Data Post-Processing......Page 608
21.2.4.1 Setting the Test Conditions (Test Inputs)......Page 609
21.2.4.2 Measuring the Test Outputs......Page 610
21.2.5.1 Setting the Test Conditions (Test Inputs)......Page 611
21.2.5.2 Measuring the Test Outputs......Page 612
21.2.6.2 Measuring the Test Outputs......Page 613
21.2.6.3 Data Post-Processing......Page 614
21.4.1 Analysis of MEA Aging Phenomena......Page 615
21.4.2 Load Cycling......Page 616
21.5 Design of Experiments in the Field of Fuel-Cell Research......Page 620
References......Page 621
22.2 Verification Methods in Fuel-Cell Process Engineering......Page 625
22.2.1 Design of Experiments......Page 626
22.2.1.1 22 Factorial Design......Page 627
22.2.1.2 32 Factorial Design......Page 629
22.2.1.3 23 Factorial Design......Page 632
22.2.1.4 2n-k Fractional Factorial Designs......Page 637
22.2.2 Evaluation of Measurement Uncertainty......Page 638
22.2.2.1 Summary of Procedure to Evaluate and Express Uncertainty......Page 639
22.2.2.2 The Use of the Monte Carlo Method to Evaluate Uncertainty......Page 640
22.2.2.3 Practical Example of the Use of the Monte Carlo Method to Evaluate Uncertainty......Page 641
22.2.3 Determination of Conversion in Reforming Processes......Page 644
22.3.1 Systems Analysis via Statistical Methods......Page 656
22.3.2 Predictive Method to Determine Vapor–Liquid and Liquid–Liquid Equilibria......Page 658
22.3.2.1 Residual Hydrocarbons in the Reformer Product Gas......Page 660
22.3.2.2 Evaporation of Model Fuels......Page 662
22.3.3 Model Evaluation for Nonlinear Systems of Equations......Page 665
22.3.4 Pinch-Point Analysis......Page 667
22.4 Conclusion......Page 669
References......Page 670
Part V Modeling and Simulation......Page 673
23.1 Introduction......Page 675
23.2.1 The Basic Equations......Page 676
23.2.2 Ideal Transport of Feed Molecules......Page 678
23.2.3 Polarization Curve......Page 679
23.2.4 The Critical Current Density......Page 680
23.2.5 The x-Shapes......Page 681
23.2.6 A Model for Cr Poisoning of the SOFC Cathode......Page 682
23.2.7 Optimum Catalyst Loading......Page 685
23.3 Polarization Curve of PEMFCs and HT-PEMFCs......Page 686
23.3.1 Oxygen Transport in the GDL and the Polarization Curve......Page 687
23.3.2 Low-Current Regime......Page 688
23.3.3 High-Current Regime......Page 689
23.3.4 One-Dimensional Cell Polarization Curve......Page 690
23.3.5 Oxygen Consumption in the Channel and the Quasi-Two-Dimensional Polarization Curve......Page 691
List of Symbols......Page 693
References......Page 695
24 Stochastic Modeling of Fuel-Cell Components......Page 697
24.1 Multi-Layer Model for Paper-Type GDLs......Page 698
24.1.1 Modeling of Fibers......Page 699
24.1.2 Modeling of Binder......Page 700
24.1.3 Fitting of Model Parameters......Page 702
24.1.4 Further Results......Page 703
24.2 Time-Series Model for Non-Woven GDLs......Page 704
24.3 Stochastic Network Model for the Pore Phase......Page 705
24.3.1.1 Detection of Pores......Page 706
24.3.1.2 Modification of Pore Phase Graph......Page 707
24.3.2.2 Construction and Fitting of Point Process Model......Page 708
24.3.3 Validation of Vertex Model......Page 712
24.3.4.1 Moving-Average Model for Dependent Marking......Page 713
24.3.4.2 Degrees of Vertices......Page 715
24.3.5 Stochastic Modeling of Edges......Page 716
24.3.5.1 MCMC Simulation for Edge Rearrangement......Page 717
24.4.1 Classical Random Graph Models......Page 718
24.4.2 Transport Simulations along Edges of Graphs......Page 719
24.5.1 Tortuosity......Page 720
24.5.2 Pore Size Distributions......Page 722
24.5.3 Connectivity......Page 723
24.5.4 Validation of Multi-Layer Model......Page 724
24.6 Conclusion......Page 726
References......Page 727
25.1 Introduction......Page 731
25.2 High-Performance Computing for Fuel Cells......Page 733
25.3 HPC-Based CFD Modeling for Fuel-Cell Systems......Page 739
25.3.1 Principles of Computational Fluid Dynamics......Page 740
25.3.2.1 Turbulence......Page 743
25.3.2.3 Mixtures and Reactions......Page 745
25.3.2.4 Multiphase Flows......Page 747
25.3.2.5 Porous Media......Page 748
25.3.3 CFD Modeling of the Core Components of an HT-PEFC Auxiliary Power Unit......Page 749
25.4 CFD-Based Design......Page 756
25.5 Conclusion and Outlook......Page 758
References......Page 759
26.1 Introduction......Page 761
26.2 Governing Equations of Solid Oxide Fuel Cells......Page 763
26.2.1 Mass Conservation......Page 764
26.2.2 Momentum Conservation......Page 766
26.2.3 Energy Conservation......Page 767
26.2.4 Electrochemistry......Page 768
26.2.4.1 Continuum-Level Electrochemistry Approach......Page 769
26.2.4.2 Mesoscale Electrochemistry Approach......Page 770
26.2.5 Chemical Reactions......Page 773
26.3.1 System-Level Modeling......Page 775
26.3.2 Stack-Level Modeling......Page 778
26.3.3 Cell-Level Modeling......Page 783
26.4 Mesoscale SOFC Modeling......Page 786
26.6 Conclusion......Page 789
References......Page 790
27.1 Introduction......Page 795
27.2 Chronological Overview of Numerically Performed Thermomechanical Analyses in SOFCs......Page 796
27.3.1 Cell, Sealant, and Wire Mesh Components......Page 801
27.3.2 Metallic Components......Page 804
27.4 Effect of Geometric Design on the Stress Distribution in SOFCs......Page 806
27.4.1 Computational Fluid Dynamics (CFD) Analysis......Page 807
27.4.2 Thermomechanically Induced Stress Analysis......Page 810
27.4.2.2 Thermomechanically Induced Stress Within the Metal Components......Page 811
27.5 Conclusion......Page 816
References......Page 817
28.1 Introduction......Page 819
28.2.1 General Assumptions......Page 822
28.2.2 Anode Gas Channels......Page 823
28.2.3 Cathode Gas Channels......Page 826
28.2.4 Solid Phase......Page 827
28.2.5 Potential Field Model......Page 828
28.3 Electrode Models......Page 832
28.3.1 Spatially Lumped Models......Page 834
28.3.2 Thin-Film Models......Page 836
28.3.3 Agglomerate Models......Page 837
28.3.4 Volume-Averaged Models......Page 838
28.4 Conclusion......Page 839
List of Symbols......Page 840
References......Page 842
29.1 Introduction......Page 847
29.2 Cell-Level Modeling......Page 849
29.3 Stack-Level Modeling......Page 853
29.4 Phosphoric Acid as Electrolyte......Page 855
29.5 Basic Modeling of the Polarization Curve......Page 857
29.5.1 Activation Overpotential......Page 858
29.5.2 Ohmic Resistance......Page 859
29.5.3 Mass Transport......Page 861
29.6 Conclusion and Future Perspectives......Page 862
References......Page 863
30.1 Introduction......Page 867
30.2 Polymer Electrolyte Membrane......Page 870
30.3 Catalyst Layers......Page 873
30.4 Gas Diffusion Layers and Microporous Layers......Page 878
30.5 Gas Flow Channels......Page 887
30.6 Gas Diffusion Layer-Gas Flow Channel Interface......Page 892
30.7 Bipolar Plates......Page 896
30.9 Model Validation......Page 897
30.10 Conclusion......Page 899
List of Symbols......Page 900
References......Page 902
31.1 Introduction......Page 907
31.2 Cell-Level Modeling and Simulation......Page 909
31.2.1 Dimensionality......Page 910
31.2.2 Transient Operation......Page 912
31.2.3 Nonisothermal Modeling......Page 916
31.2.4 Two-Phase Flow......Page 919
31.2.5 Cold Start Operation......Page 921
31.2.6 Large-Scale Fuel-Cell Simulation......Page 926
31.2.7 Flow Maldistribution......Page 928
31.2.7.1 Single-Phase Flow......Page 929
31.2.7.2 Two-Phase Flow......Page 930
31.2.8 Model Validation......Page 931
31.3.1 Why Is Stack-Level Modeling Needed?......Page 934
31.3.2 Modeling and Simulation of Fuel-Cell Stacks......Page 935
31.3.3 Model Validation......Page 938
31.4 Conclusion......Page 939
List of Symbols......Page 940
References......Page 941
Part VI Balance of Plant Design and Components......Page 945
32.1 Introduction......Page 947
32.2.1 General Considerations......Page 948
32.2.2 Chemical Equilibrium......Page 951
32.2.3.1 System Set-Up......Page 954
32.2.3.2 Gibbs Energy Function......Page 955
32.2.3.3 Pinch Point Diagram......Page 956
32.2.3.4 Exergy Analysis......Page 958
32.2.3.5 Process Optimization......Page 960
32.2.4 Process Analysis and Design......Page 968
32.3 Detailed Engineering......Page 973
32.3.1 Piping and Instrumentation Diagram......Page 976
32.3.2 FMEA......Page 978
32.3.3 Selection of Peripheral Components......Page 981
32.3.4 Drawings and Piping......Page 982
32.5 Construction......Page 984
32.6 Conclusion......Page 985
Subscripts and Superscripts......Page 986
References......Page 987
33.1 Solid Oxide Fuel Cells for Power Generation......Page 991
33.2.1 General......Page 993
33.2.2 Type of SOFC Power System......Page 996
33.2.3 SOFC Power System Design......Page 997
33.3.1.1 SOFC Stack......Page 998
33.3.1.2 Other Power Generating Equipment......Page 1005
33.3.2 Fuel Processing Subsystem......Page 1007
33.3.3 Fuel, Oxidant, and Water Delivery Subsystem......Page 1010
33.3.4 Thermal Management Subsystem......Page 1011
33.3.5 Power Conditioning Subsystem......Page 1015
33.3.6 Control Subsystem......Page 1017
33.4.1 Portable Systems......Page 1019
33.4.2.1 SOFC-Based APUs for Automobiles and Trucks......Page 1021
33.4.2.2 SOFC-Based APUs for Aircraft......Page 1022
33.4.3.1 Stationary Simple Cycle SOFC Systems......Page 1025
33.4.3.2 SOFC/GT Hybrid Systems......Page 1026
33.4.3.3 Integrated Gasification Fuel Cell (IGFC) Systems......Page 1029
References......Page 1034
34.2.1 Crude Oil......Page 1039
34.2.2 Routes for Inserting Sulfur into the Molecules in Crude Oil......Page 1040
34.2.3 Different Chemical Classes of Sulfur-Containing Substances in Crude Oil......Page 1041
34.2.4 Catalyst Poisoning by Sulfur-Containing Substances in Crude Oil Fractions......Page 1043
34.3 Desulfurization in the Gas Phase......Page 1044
34.3.2 Adsorption......Page 1045
34.3.3.1 H2S Removal......Page 1046
34.3.3.3 SO2 Removal......Page 1048
34.3.4 Hydrofining......Page 1049
34.4.1 Hydrodesulfurization with Presaturator......Page 1050
34.4.2 Adsorption......Page 1052
34.4.3 Ionic Liquids......Page 1054
34.4.4.2 Photo-oxidation......Page 1056
34.4.4.4 Biological Processes......Page 1057
34.4.5 Desulfurization with Overcritical Fluids......Page 1058
34.4.6 Distillation......Page 1059
34.4.7.2 Processes with Nonporous Membranes......Page 1060
34.5 Application in Fuel-Cell Systems......Page 1062
34.6 Conclusion......Page 1066
References......Page 1067
35.2.1 Driving Resistance......Page 1073
35.2.2 Energy Conversion and Driving Cycles......Page 1074
35.3.1 Overview of Propulsion Systems......Page 1077
35.3.2 Powertrain Comparison......Page 1083
35.3.3.2 Hybrid Electric Fuel Cell Vehicles......Page 1086
35.3.3.3 Triple-Hybrid Fuel Cell Vehicles......Page 1088
35.4.1 Hydrogen Storage......Page 1089
35.4.2 Fuel Cell Systems for Automotive Applications......Page 1091
35.4.3 Electrical Storage......Page 1093
35.4.4 Electric Machines......Page 1095
35.4.5 Cost Comparison of Vehicle Drivetrains......Page 1098
35.5 Conclusion......Page 1100
References......Page 1101
36.1 Introduction......Page 1103
36.2.1 Reasons for Hybridizing a Fuel Cell......Page 1104
36.2.2.1 Series and Parallel Hybrids......Page 1105
36.2.2.2 Active and Passive Hybrids......Page 1106
36.3 Components of a Fuel-Cell Hybrid......Page 1109
36.3.2 Energy Storage......Page 1110
36.3.3 Power Electronics......Page 1111
36.3.4 Control Unit......Page 1112
36.4.2 Basic Types......Page 1113
36.4.3 Possible Concepts......Page 1115
36.5.1 Fuel-Cell Powertrains......Page 1116
36.5.1.1 Passenger Cars......Page 1117
36.5.2 Light Traction Applications......Page 1120
36.5.2.2 Commercial Vehicles......Page 1121
36.5.2.3 Forklift Trucks......Page 1122
36.6 Systems Analysis......Page 1124
References......Page 1126
Part VII Systems Verification and Market Introduction......Page 1133
37.2 Premium Power Market Overview......Page 1135
37.3.1 Homes......Page 1137
37.3.2 Off-Grid Base Stations......Page 1139
37.4.1 Remote Monitoring/Remote Sensing......Page 1141
37.4.2.1 Soldier Power......Page 1143
37.4.3 Portable Generators –Military......Page 1144
References......Page 1145
38.2 Why Demonstration?......Page 1147
38.3 Transportation Demonstrations......Page 1148
38.3.1.1 Clean Energy Partnership......Page 1150
38.3.1.2 Activities in North Rhine-Westphalia......Page 1152
38.3.1.4 Additional Resources......Page 1153
38.3.2.1 Japan Hydrogen and Fuel Cell Demonstration Project (JHFC)......Page 1154
38.3.2.4 Additional Resources......Page 1157
38.3.3.1 The DOE Technology Validation Program......Page 1158
38.3.3.2 State Activities......Page 1160
38.3.4 European Union......Page 1161
38.3.4.1 Fuel-Cell Bus Projects......Page 1162
38.3.4.2 H2moves Scandinavia......Page 1163
38.3.5 Canada......Page 1164
38.3.7 China......Page 1165
38.3.8 Auto Maker Demonstration Programs......Page 1166
38.4 Stationary Power and Early Market Applications......Page 1167
38.4.1 Japan......Page 1168
38.4.1.2 Additional Resource......Page 1169
38.4.3 Germany......Page 1170
38.4.4 European Union......Page 1171
38.4.5 United States......Page 1172
38.4.6 South Korea......Page 1173
References......Page 1174
Further Reading......Page 1178
Part VIII Knowledge Distribution and Public Awareness......Page 1179
39.1 Introduction......Page 1181
39.2 The IEA HIA Strategic Framework: Overview......Page 1182
39.2.1 Theme 1: Collaborative RD&D......Page 1183
39.2.1.1 Production Portfolio......Page 1185
39.2.1.2 Storage Portfolio......Page 1186
39.2.1.3 Integrated Systems Portfolio......Page 1187
39.2.1.4 Integration in Existing Infrastructure Portfolio......Page 1188
39.2.2.1 Technical Portfolio......Page 1189
39.2.3.1 Information Dissemination Portfolio......Page 1190
39.2.3.2 Safety Portfolio......Page 1191
39.2.3.3 Outreach Portfolio......Page 1192
39.4 IEA HIA: the Past as Prolog......Page 1194
39.5 The 2009–2015 IEA HIA Work Program Timeline......Page 1201
39.6 Conclusion and Final Remarks......Page 1205
Further Reading......Page 1207
40.2 International Level......Page 1209
40.2.1 International Partnership for Hydrogen and Fuel Cells in the Economy......Page 1210
40.2.2 International Energy Agency......Page 1211
40.2.2.1 Implementing Agreement on Advanced Fuel Cells......Page 1212
40.2.2.2 Hydrogen Implementing Agreement......Page 1213
40.3.1 Fuel Cells and Hydrogen Joint Undertaking......Page 1215
40.3.1.1 FCH JU Members......Page 1217
40.3.1.2 Governance Structure......Page 1218
40.3.2 European Hydrogen Association......Page 1221
40.4.1 US Fuel Cell and Hydrogen Energy Association......Page 1224
40.4.1.2 Resources......Page 1225
40.4.2 Canadian Hydrogen and Fuel Cell Association......Page 1226
40.4.3 German National Organization for Hydrogen and Fuel Cell Technology......Page 1228
40.5.1 European Regions and Municipalities Partnership for Hydrogen and Fuel Cells......Page 1229
40.5.2 Hydrogen and Fuel-Cell Activities in Germany’s Federal States......Page 1230
40.6.1 The California Fuel Cell Partnership......Page 1232
40.6.3 Initiative Brennstoffzelle......Page 1234
40.7 Conclusion......Page 1236
References......Page 1237
41.1 Introduction......Page 1239
41.2 Information for Interested Laypeople......Page 1240
41.3 Education for School Students and University Students......Page 1241
41.4 Electrolyzers and Fuel Cells in Education and Training......Page 1243
41.5 Training and Qualification for Trade and Industry......Page 1244
41.6 Education and Training in the Scientific Arena......Page 1246
41.7 Clarification Assistance in the Political Arena......Page 1247
41.8 Analysis of Public Awareness......Page 1248
References......Page 1249
Index......Page 1251