The decade of the brain has brought us a few steps closer to some of the key questions in neuroscience. The complexity of memory is seen on the systems and cellular level, and different types of memory are implemented in several cellular changes that can interact, or work independently.From Messengers to Molecules: Memories are Made of These, follows the arguments from different research teams for their particular area of expertise. All chapters are written to stand-alone and provide an up-to-date introduction to the topic for both specialists and novices alike. As a result, a comprehensive compendium covering cellular mechanisms contributing to memory formation in an unusual breadth has emerged. This books will be of interest to researchers working on the pharmacology, physiology and genetics of memory formation, clinicians memory disorders, industry and students in advanced courses in Neuroscience or Pharmacology.
Author(s): Gernot Riedel, Bettina Platt
Series: Neuroscience Intelligence Unit
Edition: 1
Publisher: Springer
Year: 2004
Language: English
Pages: 638
EEn......Page 1
From Messengers to Molecules: Memories Are Made of These......Page 2
Copyright Info......Page 4
Dedication......Page 5
TOC......Page 6
Contributors......Page 13
Preface......Page 19
Abbreviations......Page 21
Introduction......Page 25
Ca2+ Influx......Page 26
Intracellular Release And Storage......Page 28
Ryanodine Receptors......Page 29
Neurotransmitter Release......Page 31
Long-term Changes Of Ca2+-influx Via Memory-specific K+ Channel Regulation......Page 32
Unknown......Page 0
Information Coding......Page 33
Long-term Modifications Of Synapses......Page 34
Synaptic Interaction And Associative Learning......Page 35
Oxygen-sensing And Hypoxic Injury......Page 36
Gene Expression......Page 37
Conclusion......Page 38
Introduction......Page 44
How Can K+ Channels Contribute To Learning And Memory?......Page 46
K+ Channels And Invertebrate Learning And Memory......Page 47
Studies In Hermissenda Crassicornis......Page 48
Studies In Aplysia Californica......Page 49
Studies In Drosophila Melanogaster......Page 50
Studies In Other Invertebrates......Page 52
Modulation Of The Slow Afterhyperpolarization (sahp) As A L&m Mechanism......Page 53
Modulation Of A-type K+ Channels As A L&m Mechanism......Page 54
Conclusion......Page 55
Acknowledgements......Page 57
Introduction......Page 63
Spatial Learning......Page 67
The 8-arm Radial Maze......Page 73
Other Spatial Learning Paradigms......Page 74
Conditioning To Context And Cue......Page 75
One-trial Inhibitory Avoidance In 1 Day-old Chicks......Page 78
Active Avoidance......Page 79
Conclusions And Remaining Questions......Page 83
Introduction......Page 96
Picrotoxin......Page 97
Bicuculline......Page 98
Gabaergic Drugs And Memory: Genotype-dependent Effects......Page 99
Gabaergic Drugs And The State-dependency Hypothesis......Page 100
Gabaergic Drugs And Memory Formation: Administrations Into Brain Structures......Page 101
Gaba-opioids Interactions......Page 106
Gaba-ethanol Interactions......Page 108
Introduction......Page 114
Anatomy Of Brain Cholinergic Pathways......Page 116
Cns Distribution Of The Muscarinic Receptors......Page 117
Alterations In Machr Expression In Behaviorally-induced Plasticity......Page 119
Muscarinic Receptors In Aging And Alzheimer’s Disease......Page 120
Which Cognitive Processes Depend On The Activation Of Muscarinic Receptors?......Page 122
Cognitive Alterations Induced By The Blockade Of Muscarinic Receptors......Page 123
Cognitive Alteration Induced By Lesions In The Cholinergic Pathways......Page 124
Cognitive Processes Associated With Changes In Cholinergic Activity......Page 126
Effects Of Direct And Indirect Selective Muscarinic Receptor Agonists On Learning And Memory: Therapeutic Implications......Page 127
Conclusions......Page 128
Neuronal Nachrs......Page 137
Localization......Page 138
Memory......Page 139
Attention......Page 141
Rewarding/incentive Effects......Page 142
Other Effects......Page 144
Acknowledgements......Page 145
Introduction......Page 149
Role Of 5-ht In Memory: Global Strategies......Page 150
Basic Neurobiological Data......Page 152
5-ht Receptors And Linkage To Second Messenger: Signaling Pathways......Page 153
Anatomical And Cellular Compartment Locations......Page 154
Receptors That Inhibit Adenylyl Cyclase......Page 156
Receptors That Stimulate Adenylyl Cyclase......Page 158
Receptors That Stimulate Phospholipase C......Page 159
A Ligand-gated Ion Channel......Page 160
New Tools For Research And Therapeutical Strategies......Page 161
Introduction: Dopamine Receptors In The Brain......Page 167
Dopamine Receptor Subtypes......Page 168
Da Receptors And Locomotor Activity......Page 169
Da Receptors And Eating And Drinking......Page 170
Da Receptors And Cognition......Page 171
Dopaminergic Depletions And Cognitive Impairments......Page 172
Intracerebral Infusion Of Dopaminergic Drugs And Cognitive Processes......Page 173
Epilogue......Page 175
Sources Of Noradrenaline In The Cns......Page 179
Signal Transduction Pathways Of ß-adrenoceptors......Page 180
Localization Of Mrna......Page 182
Factors Affecting Drug Action At Adrenoceptors......Page 183
Amygdala......Page 184
Prefrontal Cortex......Page 185
Locus Coeruleus......Page 186
Memory Studies With Adrenoceptor Agonists And Antagonists In Chicks......Page 187
-adrenoceptors......Page 190
-adrenoceptors......Page 193
Summary......Page 194
The Histaminergic Neuron System......Page 198
The Role Of The Tuberomammillary Nucleus Projection System In Neural Plasticity And Functional Recovery......Page 200
The Role Of The Histaminergic Neuronal System In The Control Of Reinforcement......Page 202
The Role Of The Histaminergic Neuronal System In The Control Of Learning And Mnemonic Processes......Page 205
Lesion Studies......Page 206
Pharmacological Approach......Page 209
Tuberomammillary Modulation Of Hippocampal Signal Transfer......Page 211
Acknowledgments......Page 213
Adenosine Receptors......Page 220
Adenosine Receptor Subtypes And Learning......Page 221
Cellular Actions Of Adenosine......Page 222
Adenosine And Synaptic Plasticity......Page 223
Paired-pulse Inhibition......Page 224
Cellular Mechanisms Of Adenosine / Acetylcholine Interactions......Page 225
Adenosine And Acetylcholine Release......Page 226
Adenosine And Glutamate Receptor Interactions......Page 227
Other Receptor Interactions......Page 229
Adenosine And Dopamine......Page 231
Trophic Functions Of Nucleosides......Page 234
Nucleotides And Synaptic Plasticity......Page 235
Atp And Synaptic Plasticity......Page 236
Summary......Page 238
Opioid Peptides......Page 270
Cannabinoid Receptors......Page 248
Cannabinoid Receptor Ligands......Page 249
Water Maze......Page 250
T-and Y Maze Procedures......Page 262
Conditioning Of Fear......Page 263
Olfactory And Gustatory Memory Paradigms......Page 264
Conclusions......Page 265
Receptors......Page 271
Effects Of Opioid Receptor Ligands On Long-term Potentiation In Hippocampal Regions (table 2)......Page 273
Ameliorating Effects Of Opioid Receptor Ligands On Models Of Learning And Memory Impairment (table 4)......Page 275
Future Expectation......Page 278
Posterior Pituitary Peptides (vasopressin, Oxytocin)......Page 280
Acth/msh And Opioid Peptides......Page 285
Hypophyseotropic Peptides (crf, Somatostatin)......Page 287
Brain-gut Peptides (cck, Neuropeptide Y, Galanin)......Page 290
Substance P......Page 294
Natriuretic Peptides, Angiotensin......Page 296
Amyloid Peptides......Page 301
Conclusions......Page 302
Introduction......Page 310
Nerve Growth Factor And The Basal Forebrain Cholinergic System......Page 311
Does Early Icv Nfg Injections Alter The Development Of Spatial Abilities In Immature Rats?......Page 313
Rats Treated On Days 2 And 3......Page 317
Discussion......Page 319
The Promiscuous Family Of Eph Receptors......Page 324
Eph Receptors Are In The Right Places And At The Right Time......Page 325
Function Of Eph Receptors In The Normal Brain: Role In Plasticity And Memory......Page 326
Mechanisms Mediating Eph Action: The First Working Hypotheses......Page 330
Concluding Remarks......Page 334
Glucocorticoids And The Hypothalamic-pituitary-adrenal (hpa) Axis......Page 338
Corticosteroid Receptors In The Brain......Page 339
Manipulation Of The Degree Of Stress Involved In The Training Task......Page 341
Inhibition Of Glucocorticoid Action......Page 342
Potentiation Of Glucocorticoid Action......Page 343
Cellular And Molecular Mechanisms Involved On Glucocorticoid Effects On Memory Consolidation......Page 345
Neural Consequences Of Chronic Glucocorticoid Exposure......Page 348
Cognitive Consequences Of Chronic Glucocorticoid Exposure......Page 349
Conclusion......Page 350
Introduction......Page 354
Molecular Mechanisms Underlying Memory In Aplysia Californica......Page 355
The Drosophila System......Page 356
Regulation By G-proteins......Page 357
Regulation By Protein Kinases......Page 359
The Specific Distribution And Expression Levels Of Mammalian Adenylyl Cyclases In Brain......Page 360
Adenylyl Cyclase And Long-term Potentiation......Page 361
Are Ca2+-stimulated Adenylyl Cyclases Critical For Memory......Page 363
Adenylyl Cyclases Up Or Down Depending On Task Demands......Page 364
Summary And Conclusions......Page 367
Introduction......Page 373
What Are Phospholipases?......Page 374
Arachidonic Acid (ara), A Second Messenger......Page 375
Targets Of Ara......Page 376
Ara And Metabolites Of Ara As Transmitters And ‘retrograde Messengers’ In Synaptic Plasticity......Page 377
How To Ensure Selectivity Of Ara Messenger Activity......Page 378
Learning Experiments: Evidence For The Role Of Phospholipase Activity In Memory Formation......Page 379
A Different Second Messenger Released By Pla2: Platelet-activated Factor (paf)......Page 380
Lipoxygenases......Page 381
What Are Cyclooxygenases?......Page 382
Learning Experiments: Evidence For The Role Of Cox-2 Activity In Memory Formation......Page 383
Cooperation Of Ara And Metabolites Of Ara As Messengers In Neuronal Systems......Page 385
Defined Steps In Memory Formation......Page 386
A Potential Role For Defined Time Windows Of Messenger Systems In Memory Formation......Page 387
Introduction......Page 393
ShortAnd Long-term Memory......Page 394
The Camp/pka Signaling Pathway......Page 396
Pka Involvement In Long-term Memory Formation......Page 397
Pka Involvement In Short-term Memory Formation......Page 399
Pka Involvement In Memory Retrieval......Page 402
Summary......Page 403
Introduction......Page 407
Pkc: A Family Of Phosphorylating Enzymes......Page 408
Involvement Of Anchoring Proteins In Pkc Activation......Page 409
In Which Ltp Phase Is Pkc Involved?......Page 410
Pkc Isozymes: Who Is Doing What?......Page 411
Recent Findings: The Role Of Pkc In Synaptic Plasticity Revisited......Page 412
Classical Conditioning......Page 413
Passive Avoidance......Page 415
Perceptual Discrimination Learning And Perceptual Memory......Page 416
Motor Activity, Anxiety, Stress......Page 418
Pkc And Neuronal Pathologies Impairing Cognition......Page 419
Alzheimer’s Disease (ad)......Page 421
Brain Trauma......Page 423
Peptides......Page 424
Conclusions......Page 425
Introduction......Page 435
Camkii: Synaptic Plasticity And Memory Processing......Page 436
Downstream Effectors Of The Camkii Cascade......Page 440
Camkiv: A New (and Important) Player In The Plasticity Team......Page 442
Concluding Remarks......Page 443
The Erk/mapk Cascade......Page 449
Potassium Channel Modulation......Page 451
Kv4.2 As An Effector For Erk......Page 452
Hippocampal Involvement In Learning......Page 453
Long-term Potentiation......Page 454
Ltp As A Model For Learning And Memory......Page 455
Erk In Hippocampal Synaptic Plasticity......Page 457
A Necessity For Erk Activation For Mammalian Learning......Page 459
Spatial Learning Requires Erk......Page 461
Dissociation Of Contextual Fear Conditioning And Hfs-ltp......Page 463
Specific Contributions Of Erk Isoforms To Ltp And Learning......Page 464
Response Coordination......Page 466
Acknowledgements......Page 467
Introduction......Page 472
Protein Phosphorylation: What Is It And Why Is It Significant?......Page 473
Enzymes That Regulate Phosphorylation In The Brain......Page 474
Protein Serine/threonine Phosphatases In The Brain......Page 475
Why Phosphorylation Might Be Critical For Memory Formation......Page 476
Capacity For Specificity And Precision......Page 479
Capacity To Prolong Changes And Induce Permanent Functional Alterations......Page 480
Long Term Potentiation: A Model For Increasing Synaptic Efficacy......Page 482
Protein Phosphatases In Ltp......Page 483
Long-term Depression: A Model For Decreasing Synaptic Efficacy......Page 484
Protein Phosphatases In Ltd......Page 485
Phosphatase Involvement In Invertebrate Memory Models......Page 486
Protein Phosphatases In Aplysia Learning And Memory......Page 487
Phosphorylation In Vertebrate Memory Models......Page 488
Kinases And Phosphatases In Chick Memory Formation......Page 489
Pp2a......Page 490
Pp1......Page 491
Pp2b......Page 493
Protein Phosphatases In Rodent Learning And Memory......Page 494
Conclusion......Page 495
Regulation Of No Synthesis In The Brain......Page 504
Role Of No In Ltp And Ltd......Page 505
Spatial Learning And Memory......Page 507
Fear Memories......Page 509
Olfactory Memory......Page 510
Conclusions......Page 511
Introduction......Page 516
Activation......Page 517
Creb And Electrophysiological Studies Of Long-term Plasticity In Aplysia......Page 519
Tar Geted Disruption Of Creb Function In A Mouse......Page 520
Gaining Temporal And Spatial Control Of Creb Function In Mammals......Page 521
Detecting Creb Activation During Learning......Page 522
Conclusions......Page 524
Acknowledgements......Page 525
Introduction......Page 530
A Link Between Cholinergic System And Iegs......Page 531
Iegs And Their Relation To Stress......Page 532
Acknowledgements......Page 535
Asking About The ‘where’ And ‘when’ Of Learning-related Protein Synthesis......Page 538
Transcription Inhibitors......Page 540
Translation Inhibitors......Page 541
Hermissenda Crassicornis......Page 543
Song Learning......Page 544
Discrimination Learning......Page 545
The “where”......Page 546
A Brief History......Page 553
Protein Synthesis Inhibitors......Page 554
The Posttranslational Modifications......Page 556
Present Time......Page 557
De Novo Protein Synthesis (with Paraphernaliae)......Page 558
Conclusion......Page 561
Net Synaptogenesis Resulting From Learning......Page 567
Specific Synaptogenesis Related To Learning-induced Adult Neurogenesis......Page 571
Specific Synaptogenesis Related To Learning-induced Formation Of Multiple-synapse Boutons......Page 572
Increase In The Number Of Perforated Axospinous Synapses Following Learning: A Possible Morphological Correlate Of The Conversio......Page 577
Enlargement Of Postsynaptic Densities Following Learning: A Possible Morphological Correlate Of The Conversion Of Postsynaptical......Page 580
Conclusions......Page 582
Acknowledgements......Page 583
Introduction......Page 588
Results From Studies Employing Long-term Potentiation......Page 589
Cam Structure And Function......Page 590
Do Cell Adhesion Molecules Have A Temporal Role In Learning?......Page 591
Can Cell Adhesion Molecules Reveal Memory Pathway?......Page 593
Regulation Of Ncam Polysialylation State......Page 594
Perspective......Page 596
Acknowledgements......Page 598
The Cholinergic Hypothesis Of Memory: Lesion Studies......Page 604
Cholinergic Alterations Induced By Learning And Memory Testing......Page 605
From Assessment To Alleviation Of Age-related Memory Impairments In Mice......Page 607
Assessing Similarities Of Memory Impairments In Senescent And Hippocampal Lesioned Subjects......Page 608
Alleviating The Selective Age-related Memory Deficit......Page 610
Conclusion......Page 611
Introduction......Page 615
Altered Ca2+ Homeostasis In Aging......Page 616
Trace Eyeblink Conditioning......Page 618
Components Of The Ahp Altered In Learning......Page 619
Postsynaptic Excitability In Ca1 Hippocampal Pyramidal Neurons Decreases In Aging: Implications For Age-related Learning Deficit......Page 620
Mechanisms Underlying Aging-related Enhancement In The Siahp......Page 622
Siahp As A Link Between Age-related Changes In Ca2+ Homeostasis And Learning......Page 624