Fractals, Visualization and J, 4th Edition, Part 1

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Fractals, Visualization and J is a text that uses fractals as a motivational goal for the study of visualization. The language J is introduced as needed for the topics at hand. Included are chapters: Introduction to J and Graphics, Plots, Verbs and First Fractals, Time Series and Fractals, Iterated function systems and Raster Fractals, Color, Contours and Animations, Complex Dynamics, Cellular Automata.

Author(s): Clifford Reiter
Edition: 4
Year: 2016

Language: English
Pages: 147
Tags: APL, J, Fractals

Preface ................................................................................................................................................ v
Getting Ready: Addon Files ...................................................................................................... vi
Chapter 1 Introduction to J and Graphics ........................................................................................ 1
1.1 Some Arithmetic with J ........................................................................................................ 1
1.2 Lists, Arrays and Trigonometric Functions ......................................................................... 3
1.3 Experiment: Plotting Polygons ............................................................................................ 4
1.4 Constructing Arrays .............................................................................................................. 5
1.5 Experiment: Creating a Raster Image .................................................................................. 7
1.6 Object versus Raster Graphics ............................................................................................. 8
1.7 Defining Functions ............................................................................................................... 8
1.8 On Language ....................................................................................................................... 12
1.9 Errors and Getting Help ..................................................................................................... 12
1.10 More Nouns and Array Computations ............................................................................. 15
1.11 Exercises ............................................................................................................................ 18
Chapter 2 Plots, Verbs and First Fractals ....................................................................................... 23
2.1 Function Composition and Plots ........................................................................................ 23
2.2 Experiment: Plotting Time Series, Functions and Curves ................................................ 25
2.3 More Function Composition .............................................................................................. 26
2.4 Experiment: The Koch Snowflake ..................................................................................... 30
2.5 Transformations of the Plane and Homogeneous Coordinates ....................................... 32
2.6 Experiment: Transformations and Animations ................................................................ 34
2.7 Gerunds and Multiplots ..................................................................................................... 36
2.8 Experiment: Collages of Transformations ........................................................................ 38
2.9 Simple Verbs ...................................................................................................................... 39
2.10 Exercises ........................................................................................................................... 41
Chapter 3 Time Series and Fractals ................................................................................................ 45
3.1 Statistics and Least Squares Fit ......................................................................................... 45
3.2 Experiment: Plot Driver ..................................................................................................... 47
3.3 Random Walks ................................................................................................................... 47
3.4 Experiment: Observing Trends ......................................................................................... 50
3.5 R/S Analysis, the Hurst Exponent, and Sunspots............................................................. 52
3.6 Autocorrelation Functions ................................................................................................. 55
3.7 Experiment: Random Midpoint Displacement ................................................................. 56
3.8 Experiment: Forecasting via Best Analogs........................................................................ 58
3.9 Exercises ............................................................................................................................. 61
Chapter 4 Iterated Function Systems and Raster Fractals ............................................................ 65
4.1 Agenda and the 3x+1 Function .......................................................................................... 65
4.2 Experiment: Probabilistic Iterated Function Systems...................................................... 66
4.3 Remarks on Iterated Function Systems ............................................................................ 69
4.4 Weighted Selection of Random Transformations .............................................................. 71
4.5 Experiment: The Chaos Game ........................................................................................... 72
4.6 Fractal Dimension .............................................................................................................. 75
4.7 Fractal Dimension via Raster Box Counting ..................................................................... 76
4.8 Exercises ............................................................................................................................. 78
Chapter 5 Color, Contours and Animations .................................................................................... 83
5.1 The RGB Color Model ......................................................................................................... 83
5.2 Adverbs and Conjunctions ................................................................................................. 85
5.3 Experiment: Color Contour Plots ...................................................................................... 86
5.4 Animations ......................................................................................................................... 89
5.5 Plasma Clouds .................................................................................................................... 90
iv
5.6 Experiment: Palettes and Inner Product Fractals ............................................................ 92
5.7 Inverse Iterated Function Systems .................................................................................... 96
5.8 Exercises ............................................................................................................................. 98
Chapter 6 Complex Dynamics ........................................................................................................101
6.1 Experiment: Julia Sets ......................................................................................................101
6.2 Experiment: Julia sets for Elliptic Curves ....................................................................... 103
6.3 The Mandelbrot Set .......................................................................................................... 104
6.4 The 3x+1 Function in the Complex Plane ....................................................................... 106
6.5 Newton's Method in the Complex Plane ......................................................................... 108
6.6 Exercises ............................................................................................................................ 112
Chapter 7 Cellular Automata .......................................................................................................... 113
7.1 One Dimensional Automata .............................................................................................. 113
7.2 Fuzzy Logic and Fuzzy Automata ..................................................................................... 117
7.3 Experiment: The Game of Life .......................................................................................... 121
7.4 Majority Rule and Spot Formation .................................................................................. 124
7.5 Cyclic Cellular Automata .................................................................................................. 126
7.6 Experiment: The Hodgepodge Rule ................................................................................ 128
7.7 Hexagonal Lattice and the Packard-Wolfram Snowflake ................................................ 131
7.8 A Snowflake Model Using Intermediate Values .............................................................. 133
7.9 Exercises ........................................................................................................................... 134
Bibliography and References ......................................................................................................... 137
Index............................................................................................................................................... 139