Fourier Integrals in Classical Analysis (Cambridge Tracts in Mathematics)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Fourier Integrals in Classical Analysis is an advanced treatment of central problems in harmonic analysis. The main theme of the book is the interplay between ideas used to study the propagation of singularities for the wave equation and their counterparts in classical analysis. Using microlocal analysis, the author in particular studies problems involving maximal functions and Riesz means using the so-called half-wave operator. This self-contained book starts with a rapid review of important topics in Fourier analysis. The author then presents the necessary tools from microlocal analysis, and goes on to give a proof of the sharp Weyl formula which he then modifies to give sharp estimates for the size of eigenfunctions on compact manifolds. Finally, the tools that have been developed are used to study the regularity properties of Fourier integral operators, culminating in the proof of local smoothing estimates and their applications to singular maximal theorems in two and more dimensions.

Author(s): Christopher D. Sogge
Series: Cambridge Tracts in Mathematics 105
Publisher: Cambridge University Press
Year: 1993

Language: English
Pages: 249