One of the results discussed in the book is Ball's theorem, establishing the exact upper bound for the $(n-1)$-dimensional volume of hyperplane sections of the $n$-dimensional unit cube (it is $\sqrt{2}$ for each $n\geq 2$). Another is the Busemann-Petty problem: if $K$ and $L$ are two convex origin-symmetric $n$-dimensional bodies and the $(n-1)$-dimensional volume of each central hyperplane section of $K$ is less than the $(n-1)$-dimensional volume of the corresponding section of $L$, is it true that the $n$-dimensional volume of $K$ is less than the volume of $L$? (The answer is positive for $n\le 4$ and negative for $n>4$.)
The book is suitable for graduate students and researchers interested in geometry, harmonic and functional analysis, and probability. Prerequisites for reading this book include basic real, complex, and functional analysis.