Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Intended a both a textbook and a reference, Fourier Acoustics develops the theory of sound radiation uniquely from the viewpoint of Fourier Analysis. This powerful perspective of sound radiation provides the reader with a comprehensive and practical understanding which will enable him or her to diagnose and solve sound and vibration problems in the 21st Century. As a result of this perspective, Fourier Acoustics is able to present thoroughly and simply, for the first time in book form, the theory of nearfield acoustical holography, an important technique which has revolutionised the measurement of sound. Relying little on material outside the book, Fourier Acoustics will be invaluable as a graduate level text as well as a reference for researchers in academia and industry. Key Features * The physics of wave propogation and sound vibration in homogeneous media *Acoustics, such as radiation of sound, and radiation from vibrating surfaces *Inverse problems, such as the theory of nearfield acoustical holography *Mathematics of specialized functions, such as spherical harmonics

Author(s): Earl G. Williams
Series: Graduate Texts in Mathematics
Publisher: Academic Press
Year: 1999

Language: English
Pages: 321

Front Cover......Page 1
Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography......Page 4
Copyright Page......Page 5
Contents......Page 6
Preface......Page 12
1.2 The Fourier Transform......Page 16
1.3 Fourier Series......Page 19
1.4 Fourier–Bessel (Hankel) Transforms......Page 20
1.5 The Dirac Delta Function......Page 21
1.6 The Rectangle Function......Page 22
1.8 Continuous Fourier Transform and the DFT......Page 23
Problems......Page 28
2.2 The Wave Equation and Euler's Equation......Page 30
2.3 Instantaneous Acoustic Intensity......Page 32
2.4 Steady State......Page 33
2.5 Time Averaged Acoustic Intensity......Page 34
2.6 Plane Wave Expansion......Page 35
2.7 Infinite Plate Vibrating in a Normal Mode......Page 41
2.8 Wavenumber Space: k-space......Page 42
2.9 The Angular Spectrum: Fourier Acoustics......Page 46
2.10 Derivation of Rayleigh's Integrals......Page 49
2.11 Farfield Radiation: Planar Sources......Page 53
2.12 Radiated Power......Page 67
2.13 Vibration & Radiation: Infinite Point-driven Plate......Page 71
2.14 Vibration & Radiation: Finite, Simply Supported Plate......Page 77
2.15 Supersonic Intensity......Page 92
Problems......Page 98
3.1 Introduction......Page 104
3.2 Overview of the Theory......Page 105
3.3 Presentation of Theory for a One-Dimensional Radiator......Page 106
3.4 Ill Conditioning Due to Measurement Noise......Page 108
3.5 The k-space Filter......Page 109
3.6 Modification of the Filter Shape......Page 112
3.7 Measurement Noise and the Standoff Distance......Page 113
3.8 Determination of the k-space Filter......Page 115
3.9 Finite Measurement Aperture Effects......Page 118
3.10 Discretization and Aliasing......Page 120
3.11 Use of the DFT to Solve the Holography Equation......Page 122
3.12 Reconstruction of Other Quantities......Page 127
Problems......Page 128
4.2 The Wave Equation......Page 130
4.3 General Solution......Page 136
4.4 The Helical Wave Spectrum: Fourier Acoustics......Page 140
4.5 The Rayleigh-like Integrals......Page 148
4.6 Farfield Radiation - Cylindrical Sources......Page 152
4.7 Radiated Power......Page 162
Problems......Page 163
5.2 Overview of the Inverse Problem......Page 164
5.3 Computer Implementation of NAH......Page 169
5.4 Experimental Results......Page 175
Problems......Page 196
6.2 The Wave Equation......Page 198
6.3 The Angle Functions......Page 201
6.4 Radial Functions......Page 208
6.5 Multipoles......Page 212
6.6 Spherical Harmonic Directivity Patterns......Page 219
6.7 General Solution for Exterior Problems......Page 221
6.8 General Solution for Interior Problems......Page 232
6.9 Transient Radiation - Exterior Problems......Page 236
6.10 Scattering from Spheres......Page 239
Problems......Page 247
7.1 Introduction......Page 250
7.2 Formulation of the Inverse Problem- Exterior Domain......Page 251
7.3 Interior NAH......Page 253
7.4 Scattering Nearfield Holography......Page 260
Problems......Page 264
8.2 Green's Theorem......Page 266
8.3 The Interior Helmholtz Integral Equation......Page 267
8.4 HIE for Radiation Problems (Exterior Domain)......Page 275
8.5 HIE for Scattering Problems......Page 277
8.6 Green Functions & the Inhomogeneous Wave Equation......Page 279
8.7 Simple Source Formulation......Page 282
8.8 The Dirichlet and Neumann Green Functions......Page 287
8.9 Construction by Eigenfunction Expansion......Page 292
8.10 Evanescent Neumann & Dirichlet Green Functions......Page 296
8.11 Arbitrarily Shaped Bodies......Page 303
8.12 Conformal NAH for Arbitrary Geometry......Page 306
Problems......Page 308
Index......Page 311