Foundations without Foundationalism: A Case for Second-Order Logic

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The central contention of this book is that second-order logic has a central role to play in laying the foundations of mathematics. In order to develop the argument fully, the author presents a detailed description of higher-order logic, including a comprehensive discussion of its semantics. He goes on to demonstrate the prevalence of second-order concepts in mathematics and the extent to which mathematical ideas can be formulated in higher-order logic. He also shows how first-order languages are often insufficient to codify many concepts in contemporary mathematics, and thus that both first- and higher-order logics are needed to fully reflect current work. Throughout, the emphasis is on discussing the associated philosophical and historical issues and the implications they have for foundational studies. For the most part, the author assumes little more than a familiarity with logic comparable to that provided in a beginning graduate course which includes the incompleteness of arithmetic and the Lowenheim-Skolem theorems. All those concerned with the foundations of mathematics will find this a thought-provoking discussion of some of the central issues in the field today.

Author(s): Stewart Shapiro
Series: Oxford Logic Guides 17
Publisher: Clarendon Press
Year: 1991

Language: English
Pages: 298