Foundations of Rigid Geometry I

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Rigid geometry is one of the modern branches of algebraic and arithmetic geometry. It has its historical origin in J. Tate’s rigid analytic geometry, which aimed at developing an analytic geometry over non-archimedean valued fields. Nowadays, rigid geometry is a discipline in its own right and has acquired vast and rich structures, based on discoveries of its relationship with birational and formal geometries. In this research monograph, foundational aspects of rigid geometry are discussed, putting emphasis on birational and topological features of rigid spaces. Besides the rigid geometry itself, topics include the general theory of formal schemes and formal algebraic spaces, based on a theory of complete rings which are not necessarily Noetherian. Also included is a discussion on the relationship with Tate‘s original rigid analytic geometry, V.G. Berkovich‘s analytic geometry and R. Huber‘s adic spaces. As a model example of applications, a proof of Nagata‘s compactification theorem for schemes is given in the appendix. The book is encyclopedic and almost self-contained. Keywords: Rigid geometry, formal geometry, birational geometry

Author(s): Kazuhiro Fujiwara, Fumiharu Kato
Series: EMS Monographs in Mathematics
Publisher: European Mathematical Society
Year: 2018

Language: English
Pages: 863
Tags: Algebraic Geometry;Geometry & Topology;Mathematics;Science & Math;Number Theory;Pure Mathematics;Mathematics;Science & Math