Foundations of Biochemical Engineering. Kinetics and Thermodynamics in Biological Systems

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"


Content: Models of gene function : general methods of kinetic analysis and specific ecological correlates / Michael A. Savageau --
Kinetics of enzyme systems / David F. Ollis --
Optimization of fermentation processes through the control of in vivo inactivation of microbial biosynthetic enzymes / Spyridon N. Agathos and Arnold L. Demain --
Microbial regulatory mechanisms : obstacles and tools for the biochemical engineer / H.E. Umbarger --
Mathematical models of the growth of individual cells : tools for testing biochemical mechanisms / M.L. Shuler and M.M. Domach --
Single-cell metabolic model determination by analysis of microbial populations / James E. Bailey --
A cybernetic perspective of microbial growth / Doraiswami Ramkrishna --
Strategies for optimizing microbial growth and product formation / Charles L. Cooney --
Interactions of microbial populations in mixed culture situations / A.G. Fredrickson --
The role of specialists and generalists in microbial population interactions / J.G. Kuenen --
Microbial predation dynamics / M.J. Bazin, C. Curds, A. Dauppe, B.A. Owen, and P.T. Saunders --
Effects of cell motility properties on cell populations in ecosystems / Douglas A. Lauffenburger --
Macroscopic thermodynamics and the description of growth and product formation in microorganisms / J.A. Roels --
Ion pumps as energy transducers / Erich Heinz --
Kinetics and transport phenomena in biological reactor design / M. Moo-Young and H.W. Blanch --
Reactor design fundamentals : hydrodynamics, mass transfer, heat exchange, control, and scale-up / Ales Prokop --
Immobilized cells : catalyst preparation and reaction performance / J. Klein and K.-D. Vorlop --
Dissolved oxygen contours in Pseudomonas ovalis colonies / H.R. Bungay, P.M. Pettit, and A.M. Drislane --
Stochastic growth patterns generated by Phycomyces sporangiophores / R. Igor Gamow and David E. Clough --
Growth characteristics of microorganisms in solid state fermentation for upgrading of protein values of lignocelluloses and cellulase production / D.S. Chahal --
Molecular size distribution of starch during enzymatic hydrolysis / J.E. Rollings, M.R. Okos, and G.T. Tsao --
Thermochemical optimization of microbial biomass-production and metabolite-excretion rates / Alician V. Quinlan --
Kinetics of yeast growth and metabolism in beer fermentation / Ivan Marc, Jean-Marc Engasser, Manfred Moll, and Bruno Duteurtre --
Growth inhibition kinetics for the acetone-butanol fermentation / Jeanine M. Costa and Antonio R. Moreira.

Author(s): Harvey W. Blanch, E. Terry Papoutsakis, and Gregory Stephanopoulos (Eds.)
Series: ACS Symposium Series 207
Publisher: American Chemical Society
Year: 1983

Language: English
Pages: 506
City: Washington, D.C

Title Page......Page 1
Half Title Page......Page 3
Copyright......Page 4
ACS Symposium Series......Page 5
FOREWORD......Page 6
PREFACE......Page 7
ACKNOWLEDGMENTS......Page 9
PdftkEmptyString......Page 0
1 Models of Gene Function General Methods of Kinetic Analysis and Specific Ecological Correlates......Page 10
Power-law Formalism......Page 11
Demand Theory of Gene Regulation......Page 14
Experimental Implications......Page 24
Discussion......Page 30
Literature cited......Page 31
1. Soluble substrates......Page 33
2. Particulate substrates......Page 38
Immobilized Enzymes......Page 44
Summary......Page 54
Literature Cited......Page 57
3 Optimization of Fermentation Processes Through the Control of In Vivo Inactivation of Microbial Biosynthetic Enzymes......Page 59
Results and Discussion......Page 63
Conclusions......Page 70
Literature Cited......Page 72
4 Microbial Regulatory Mechanisms: Obstacles and Tools for the Biochemical Engineer......Page 74
Literature Cited......Page 93
Why Single-Cell Models?......Page 96
Examples of Single-Cell Models......Page 100
The Cornell Single-Cell Model......Page 103
Population Models From Single-Cell Models......Page 126
Acknowledgment......Page 132
Literature Cited......Page 134
6 Single-Cell Metabolic Model Determination by Analysis of Microbial Populations......Page 137
A Mathematical Model for Growth of E. coli Populations......Page 140
Cell Cycle Operation and Single-Cell Protein Synthesis Kinetics for S. pombe......Page 144
Growth and Nuclear Cycle Operation in Single Cells of S. cerevisiae......Page 152
Discussion......Page 157
LITERATURE CITED......Page 158
7 A Cybernetic Perspective of Microbial Growth......Page 160
THE CYBERNETIC FRAMEWORK. SOME ISSUES......Page 164
Growth in Multiple Substrate Systems......Page 165
Nomenclature......Page 175
Literature Cited......Page 176
8 Strategies for Optimizing Microbial Growth and Product Formation......Page 178
Production of Cell Mass......Page 179
Enzyme Production......Page 186
Maltase Production......Page 188
Heparinase Production......Page 190
Metabolite Production......Page 192
Literature Cited......Page 196
9 Interactions of Microbial Populations in Mixed Culture Situations......Page 198
Classification of population interactions......Page 199
Discussion of the interactions......Page 202
Summary and discussion......Page 220
Acknowledgement......Page 221
Literature Cited......Page 222
10 The Role of Specialists and Generalists in Microbial Population Interactions......Page 225
Literature Cited......Page 247
11 Microbial Predation Dynamics......Page 248
Methods......Page 251
Results......Page 252
Discussion......Page 257
Literature Cited......Page 259
12 Effects of Cell Motility Properties on Cell Populations in Ecosystems......Page 260
Experimental Observations......Page 265
Theoretical Analyses......Page 268
Literature Cited......Page 284
13 Macroscopic Thermodynamics and the Description of Growth and Product Formation in Microorganisms......Page 288
Macroscopic thermodynamics and processes in open systems. (5, 6)......Page 289
The thermodynamic efficiency.......Page 293
Applications of the theory......Page 297
The constant efficiency hypothesis......Page 309
List of symbols......Page 313
Literature Cited......Page 314
14 Ion Pumps as Energy Transducers......Page 316
Literature Cited......Page 323
15 Kinetics and Transport Phenomena in Biological Reactor Design......Page 325
RATE-CONTROLLING STEPS......Page 326
EFFECT OF INTERFACIAL PHENOMENA......Page 328
Moving Particles with Rigid Surfaces......Page 329
Non-Newtonian Floy Effects......Page 331
General Concepts......Page 332
Immobilized Enzyme Kinetics......Page 333
Bubble-Columns......Page 335
Systems with Stationary Internals......Page 336
Non-Viscous Systems......Page 337
Viscous Systems......Page 340
NOMENCLATURE......Page 341
Abbreviations for Dimensionless Groups......Page 342
Literature Cited......Page 343
16 Reactor Design Fundamentals Hydrodynamics, Mass Transfer, Heat Exchange, Control, and Scale-up......Page 345
Hydrodynamics......Page 348
Mass Transfer......Page 349
Heat Exchange......Page 355
Reactor Control......Page 359
Reactor Scale-Up......Page 360
Literature Cited......Page 364
17 Immobilized Cells Catalyst Preparation and Reaction Performance......Page 367
Ionotropic Gelation of Polyelectrolytes......Page 368
Polycondensation of Epoxy Resins......Page 370
Effectiveness of Immobilized Cell Catalysts......Page 373
Acknowledgements......Page 380
Literature cited......Page 382
Materials and Methods......Page 383
Results and Discussion......Page 384
Literature Cited......Page 389
19 Stochastic Growth Patterns Generated by Phycomyces Sporangiophores......Page 390
Materials and Methods......Page 392
Discussion......Page 402
Appendix: A Brief Description of Time Series Analysis......Page 405
Literature Cited......Page 406
20 Growth Characteristics of Microorganisms in Solid State Fermentation for Upgrading of Protein Values of Lignocelluloses and Cellulase Production......Page 408
Origin of Solid State Fermentation......Page 409
Nature of the Substrate......Page 410
Pretreatment of Lignocelluloses......Page 411
Mechanism of Fungal Growth During Solid State Fermentation......Page 413
Postulated Mechanism of Fungal Growth in Solid State......Page 419
Physiological Aspects......Page 424
Literature Cited......Page 426
21 Molecular Size Distribution of Starch During Enzymatic Hydrolysis......Page 430
Experimental......Page 432
Results and Discussion......Page 435
Conclusion......Page 444
Literature Cited......Page 448
22 Thermochemical Optimization of Microbial Biomass-Production and Metabolite-Excretion Rates......Page 449
Reaction Mechanism......Page 450
Rate Laws......Page 452
Thermal Sensitivity of the Macro-Coefficients......Page 456
Thermal Sensitivity of Process Rates......Page 463
Summary and Conclusions......Page 470
Legend of Symbols......Page 471
Literature Cited......Page 473
23 Kinetics of Yeast Growth and Metabolism in Beer Fermentation......Page 475
THE KINETIC MODEL......Page 476
RESULTS AND DISCUSSION......Page 480
CONCLUSIONS......Page 481
LITERATURE CITED......Page 486
24 Growth Inhibition Kinetics for the Acetone—Butanol Fermentation......Page 487
Materials and Methods......Page 488
Results and Discussion......Page 489
Literature Cited......Page 497
C......Page 499
Ε......Page 500
H......Page 501
M......Page 502
Ρ......Page 504
S......Page 505
Y......Page 506