Formal power series and umbral chromatic polynomials of graphs

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Michael K. Butler
Series: PhD thesis at University of Manchester
Year: 1992

Language: English

Abstract 5
Statement of Qualifications and Research 8
Acknowledgements 9
Introduction 10
1 Power Series, Differential Operators and Umbral Calculus 20
1.1 Power Series and Differential Operators .................................. 20
1.2 Umbral Calculus .......................................................... 23
2 Posets, Incidence Algebras and Umbral Chromatic Polynomials 32
2.1 Posets and Incidence Algebras . ................... 32
2.2 Umbral Chromatic Polynomials 38
2.3 Examples .................................. 42
3 Colouring Chains and Multichains 48
3.1 Colour Partition Chains and Multichains 48
3.2 Assignment of Type Monomials ............................ 50
3.3 Examples of Colour Partition Chains and Multichains . . . . . . . . . 52
3.4 Colouring Chains and Multichains .......................... 57
4 Composition of A-Operators 58
4.1 The Umbra 0o y / .......................................................... 58
4.2 The Umbral Chromatic Polynomial ^^(G ;*) ................................ 59
4.3 The Umbra i ........................................ 67
4.4 The Umbra 0 o ^ o * * * o 0 . . . ........................................................ 68
4.5 Examples ........................................... 71
5 Compositional Inverses of A-operators 85
5.1 The Umbra 0 ..................................... 85
5.2 The Umbral Chromatic Polynomial ^(G ;x) ............................. 86
5.3 Examples ...................... 89
6 Umbral Chromatic Polynomials and p-typihcation 99
6.1 The Umbral Chromatic Polynomial Xp(G>x) • . . . . . . . . . . . . . 100
6.2 Formal Group Laws and Chromatic Polynomials . ........................... 105
6.3 The Umbral Chromatic Polynomial ^(G ;*). ........................... 108
6.4 Examples ........................................................................................... 109
6.4.1 The prime p = 2 ................. 109
6.4.2 The Prime p = 3 ................. 116
7 Products of Exponential Operators 120
7.1 The Umbra 6+ yr ................ 120
7.2 Umbra with ro * 1 . . .......................................................................... 121
7.3 The Umbral Chromatic Polynomial ^ ^ (G ; jc ) .................. 125
7.4 The Umbral Chromatic Polynomial 128
7.5 Examples .......................... 130
7.6 The Distributive Law for Umbra ................................ 134
8 Morphisms of Graphs 137
8.1 Proper Colourings and Graph Morphisms ......................................... 137
8.2 Null Graphs and Bipartite Complete Graphs....................................... 138
8.3 /w-partite Complete Graphs ................................................................. 140
Tables 143