The food industry is on the verge of making some serious advances in the food processing sector. If successful, tomorrow’s consumers will have unhindered access to safe, nutritious, and high-quality products via novel food processing technologies. Food Processing Operations Modeling: Design and Analysis, Second Edition demonstrates how to effectively use numerical modeling to predict the effects of food processing on targeted components. This non-destructive testing method virtually eliminates the health risks of under-processed food and maintains high nutritional values that are often lost in overcooked food.
Using a task-oriented approach, this second edition discusses basic and advanced modeling tools that allow researchers to predict and prevent worse-case scenarios, perform comprehensive analyses, and optimize system design and efficiency.
Contains Selected Applications of Thermal and Non-Thermal Processing Operations
NEW TO THIS EDITION:
- Six new chapters on radio frequency heating, high-pressure processing, pulsed electric field treatment, fouling model on heat exchangers, ozone treatment, and UV radiation
- Expanded scope to address innovative and up-to-date food processing technologies
- Numerous real-world case studies
- Updated information on infrared heating of biological materials and modeling electrical resistance heating of foods
- Electromagnetic treatments (RF, Infrared, and UV) and fundamentals relative to heat and mass transfer, fluid flow, and stochastic processes
- Synergistic effect of combined food processing techniques and its numerical simulation
Food processing methods are constantly improving in an effort to maintain safe, high-quality, and fresh-tasting products. Providing the theoretical basis for these cutting-edge techniques, this tried-and-tested reference provides indispensable insight into food systems modeling, while exploring applications for further research.
Author(s): Soojin Jun, Joseph M. Irudayaraj
Series: Food Science and Technology
Edition: 2
Publisher: CRC Press
Year: 2008
Language: English
Pages: 347
Cover Page......Page 1
Title Page......Page 2
FOOD PROCESSING OPERATIONS MODELING: Design and Analysis, SECOND EDITION......Page 3
Table of Contents......Page 5
Preface......Page 7
Editors......Page 9
Contributors......Page 10
1.1 INTRODUCTION......Page 12
1.3 NUMERICAL FORMULATION......Page 14
1.4 CLASSIFICATION AND GENERATION OF GRIDS......Page 15
1.5 BOUNDARY AND INITIAL CONDITIONS......Page 16
1.7.1 DIRECT METHODS......Page 17
1.7.2 ITERATIVE METHODS......Page 18
1.9.1 HOW IT WORKS......Page 19
1.9.5 BOUNDARY CONDITIONS......Page 20
1.10 CFD MODELING......Page 21
REFERENCES......Page 22
CONTENTS......Page 23
2.1 INTRODUCTION......Page 24
2.2.1 CRITICAL FACTORS AND PROBLEMS ASSOCIATED WITH PROCESSING......Page 26
2.3.1 TYPES OF FLUIDS......Page 27
2.3.2 DIMENSIONLESS NUMBERS GOVERNING FLOW......Page 28
2.3.3 FRICTION FACTOR......Page 30
2.3.4 PUMPS AND PUMPING REQUIREMENTS......Page 31
2.3.5 RESIDENCE TIME DISTRIBUTION OF FLUID ELEMENTS AND PARTICLES......Page 32
2.3.6.1 Equations of Motion of the Fluid......Page 34
2.3.6.2.2 Saffman Lift Force......Page 35
2.3.6.2.4 Buoyancy Force (acting in the y-direction only)......Page 37
2.3.6.3 Angular Dynamic Equations for Particles......Page 38
2.4.1 CONVECTIVE HEAT TRANSFER COEFFICIENT......Page 39
2.4.3 DIMENSIONLESS NUMBERS GOVERNING HEAT TRANSFER......Page 40
2.4.5 TRANSIENT HEAT TRANSFER WITHIN PARTICLES......Page 42
2.4.7 HEAT TRANSFER COEFFICIENT IN STRAIGHT TUBES......Page 43
2.4.8 HEAT TRANSFER COEFFICIENT IN HELICAL TUBES......Page 46
2.4.10 CO- AND COUNTER-CURRENT HEAT EXCHANGERS......Page 47
2.4.11 GOVERNING HEAT TRANSFER EQUATIONS AND ENERGY BALANCE......Page 48
2.4.11.2 Energy Balance in the Holding Tube......Page 49
2.4.13 TECHNIQUES TO ESTIMATE THE TEMPERATURE HISTORY OF A PRODUCT......Page 50
2.5.2 KINETICS OF MICROBIAL DESTRUCTION, ENZYME INACTIVATION, AND NUTRIENT RETENTION......Page 51
2.5.2.1 Process Lethality and Cook Values......Page 53
2.6 FROM AN IDEA TO COMMERCIALIZATION......Page 54
NOMENCLATURE......Page 57
SUBSCRIPTS......Page 59
REFERENCES......Page 60
CONTENTS......Page 63
3.1 INTRODUCTION......Page 64
3.2.1.4 Poiseuille Flow......Page 65
3.2.2 COUPLED HEAT AND MOISTURE TRANSPORT......Page 67
3.2.3 CHARACTERIZATION OF SHAPE FOR MODELING MOISTURE DIFFUSION IN GRAINS......Page 68
3.3.1.1 Boundary Condition......Page 69
3.4.1 CORN STRUCTURE......Page 71
3.4.2.1 Germ......Page 72
3.4.2.2 Pericarp......Page 76
3.4.2.3 Soft and Hard Endosperms......Page 80
3.4.3 FINITE ELEMENT SIMULATION OF CORN MOISTURE ADSORPTION......Page 84
3.5 RECOMMENDATIONS......Page 86
NOMENCLATURE......Page 87
REFERENCES......Page 88
CONTENTS......Page 91
4.2.1 RADIO FREQUENCY POWER GENERATORS......Page 92
4.2.2 RADIO FREQUENCY APPLICATORS......Page 94
4.3.1 DEFINITION OF DIELECTRIC PROPERTIES......Page 95
4.3.2 TRANSMISSION PROPERTIES......Page 97
4.3.3.1 Open-ended Coaxial Probe Methods......Page 99
4.3.3.3 Resonance Cavity Method......Page 100
4.4.1 TECHNIQUES FOR SOLVING ELECTROMAGNETIC PROBLEM......Page 101
4.4.2 FINITE-DIFFERENCE TIME DOMAIN METHOD......Page 102
4.4.4 COUPLING PROBLEM......Page 105
4.4.7.1 Simulation on Homogeneous Food......Page 106
4.4.7.1.1 Assumptions......Page 109
4.4.7.1.3 Model......Page 110
4.4.7.2 Simulation on Heterogeneous Food......Page 111
4.5 CONCLUSIONS......Page 112
NOMENCLATURE......Page 118
REFERENCES......Page 119
5.1 INTRODUCTION......Page 122
5.2 BASIC LAWS OF INFRARED RADIATION......Page 124
5.3 INTERACTION OF IR RADIATION WITH FOOD COMPONENTS......Page 125
5.4.1 DRYING AND DEHYDRATION......Page 127
5.4.2 INTEGRATED DRYING TECHNOLOGIES: IR AND CONVECTIVE DRYING......Page 128
5.4.3.2 Effect of Peak Wavelength and Bandwidth......Page 129
5.4.3.4 Types of Microorganisms......Page 130
5.4.3.5 Inactivation Mechanism......Page 131
5.5 SOURCES OF IR HEATING......Page 132
5.6 QUALITY AND SENSORY CHANGES BY IR HEATING......Page 135
5.7 IR HEAT TRANSFER MODELING......Page 137
5.8 SELECTIVE HEATING BY INFRARED RADIATION......Page 140
5.9 THERMAL DEATH KINETICS MODEL......Page 144
5.10 CONCLUSION AND FUTURE RESEARCH POTENTIAL......Page 146
REFERENCES......Page 147
6.1 INTRODUCTION......Page 152
6.2 BASIC PRINCIPLES......Page 154
6.3.1 BACKGROUND......Page 155
6.3.2 PACKAGING......Page 156
6.3.3 MODEL DEVELOPMENT......Page 157
6.3.4 MODEL VALIDATION......Page 161
6.3.5 DELIVERABLES......Page 167
6.4.1 MODEL VERIFICATION......Page 168
6.5 CASE STUDY III: MULTI-PHASE OHMIC HEATING......Page 173
REFERENCES......Page 178
7.1 INTRODUCTION......Page 181
7.2 HYDROSTATIC PRESSURE PROCESSING (HPP) OF FOODS......Page 182
7.2.1 PRINCIPLES OF HIGH PRESSURE PROCESSING......Page 183
7.2.1.1.1 Consumer Demand for Fresh Foods......Page 184
7.2.1.1.2 Pressure Processing Effect is Unique......Page 186
7.2.1.1.3 Product is a High Microbial Risk to Producer......Page 188
7.2.1.2.1 Vegetative Bacteria......Page 193
7.2.1.2.2 Bacterial Spores......Page 196
7.3.1 REACTION KINETICS ANALYSIS......Page 197
7.4 LOW HYDROSTATIC PRESSURE (LHP) DISINFESTATION OF DRY FRUITS AND VEGETABLES......Page 210
7.5 CONCLUSIONS......Page 211
REFERENCES......Page 213
8.1 INTRODUCTION......Page 221
8.2.1.1 Basics of PEF Technology......Page 224
8.2.1.1.1 Critical Components in a Typical PEF System......Page 226
8.2.1.1.2 Critical Parameters Determining the Efficacy of PEF Processing......Page 229
8.2.2 MECHANISMS FOR PEF INACTIVATION OF MICROORGANISMS AND ENZYMES......Page 231
8.2.3 MODELING PEF INACTIVATION MICROORGANISMS......Page 235
8.2.4.2.1 Pasteurization of High Acid or Acidified Food......Page 237
8.3 CONCLUSIONS......Page 238
REFERENCES......Page 239
9.1 INTRODUCTION......Page 242
9.2 FOULING MECHANISM......Page 245
9.2.1.1 One-Dimensional Models......Page 246
9.2.1.2 Two-Dimensional Models......Page 250
9.2.1.3 Three-Dimensional Models......Page 252
9.2.2.1 One Phase Approach......Page 254
9.2.2.2 Two Phase Approach......Page 255
9.2.2.3 Three and Four Phase Approaches......Page 257
9.2.3 CLEANING AND ECONOMIC MODELS......Page 261
REFERENCES......Page 265
10.1 INTRODUCTION......Page 270
10.2 WHAT IS OZONE?......Page 271
10.2.1.1 Electrical (Corona) Discharge Method......Page 273
10.2.1.3 Ultraviolet (UV) Method......Page 274
10.3.1 MODELING OZONE DIFFUSION IN LIQUID FOOD......Page 275
10.4.1 APPLICATION OF OZONE IN SOLID FOOD MATERIALS......Page 277
10.4.3 EFFECTS OF OZONE ON PRODUCT QUALITY......Page 280
10.6 DISINFECTION OF FOOD PROCESSING EQUIPMENT AND ENVIRONMENT......Page 282
REFERENCES......Page 283
11.1 INTRODUCTION......Page 288
11.2.1 INTERACTION OF LIGHT AND MATTER......Page 289
11.2.2 PULSED UV LIGHT......Page 291
11.2.3 UV LIGHT AND PULSED UV LIGHT INACTIVATION MECHANISMS......Page 292
11.2.4 SELECTED INACTIVATION STUDIES BY UV LIGHT AND PULSED UV LIGHT......Page 296
11.2.5 INACTIVATION MODELING......Page 298
11.2.7 EFFECT OF UV LIGHT ON FOOD COMPONENTS AND QUALITY......Page 300
11.2.9 CHALLENGES IN THE APPLICATION OF UV LIGHT AND PULSED UV LIGHT AND FUTURE RESEARCH NEEDS......Page 302
11.3 CONCLUSIONS......Page 305
REFERENCES......Page 306
12.1 INTRODUCTION......Page 310
12.2 NUMERICAL COMPUTATION OF CONDUCTION HEAT TRANSFER......Page 312
12.3.1 RANDOM VARIABLES......Page 313
12.3.2 RANDOM PROCESSES......Page 315
12.3.3 RANDOM FIELDS AND RANDOM WAVES......Page 318
12.4.1 DESCRIPTION......Page 320
12.4.2 GENERATION OF RANDOM VARIABLES AND PROCESSES......Page 321
12.5.1 LUMPED HEAT CAPACITANCE HEAT CONDUCTION PROBLEMS......Page 323
12.5.2 HEAT CONDUCTION PROBLEMS......Page 326
12.5.3 ALGORITHM FOR RANDOM VARIABLE PARAMETERS......Page 332
12.5.4 DERIVATIVES OF C, K AND F WITH RESPECT TO RANDOM PARAMETERS......Page 334
12.6.1 ALGEBRAIC LYAPUNOV AND SYLVESTER EQUATIONS......Page 335
12.6.2 CONVERGENCE AND STABILITY ANALYSIS......Page 337
12.8 CONCLUSIONS......Page 343
NOMENCLATURE......Page 344
REFERENCES......Page 345