A comprehensive survey of thermal processing and modelling techniques in food process engineering. It combines theory and practice to solve actual problems in the food processing industry - emphasizing heat and mass transfer, fluid flow, electromagnetics, stochastic processes, and neural network analysis in food systems. There are specific case studies with over 350 numerical and computational equations and solutions.
Author(s): Joseph M. Irudayaraj
Series: Food science and technology 107
Edition: 1
Publisher: Marcel Dekker
Year: 2001
Language: English
Pages: 352
City: New York
Tags: Пищевая промышленность;Общая технология и теоретические основы пищевых производств;
Food Processing Operations Modeling: Design and Analysis......Page 1
PREFACE......Page 9
CONTRIBUTORS......Page 13
CONTENTS......Page 11
CONTENTS......Page 0
1 INTRODUCCION......Page 15
2 PREDICTION OF SPECIFIC HEAT......Page 17
SOLUTION......Page 19
3 PREDICTION OF DENSITY......Page 21
3.1 DRY PARTICLE FOODS......Page 23
4 PREDICTION OF THERMAL CONDUCTIVITY......Page 27
4.1 VERY- LOW- MOISTURE FOODS......Page 33
4.5 HIGH- INTERMEDIATE-MOISTURE FOODS......Page 34
5 SUMMARY......Page 35
REFERENCES......Page 37
1 INTRODUCTION......Page 38
2 CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS......Page 39
3 NUMERICAL FORMULATION......Page 40
4 CLASSIFICATION AND GENERATION OF GRIDS......Page 41
6 ERRORS, CONSISTENCY, STABILITY, COMPATIBILITY AND CONVERGENCE......Page 43
7.2 ITERATIVE METHODS......Page 44
9.1 HOW IT WORKS......Page 46
9.4 ELEMENT MATRIX FORMATION TO OBTAIN GLOBAL MATRIX......Page 47
9.8 FUTURE APPLICATIONS......Page 48
REFERENCES......Page 49
1 INTRODUCTION......Page 50
2 TYPES OF PROCESSING......Page 52
2.1 CRITICAL FACTORS AND PROBLEMS ASSOCIATED WITH PRECESSING......Page 53
3.1 TYPES OF FLUIDS......Page 54
3.2 DIMENSIONLESS NUMBERS GOVERNING FLOW......Page 55
3.4 PUMPS AND PUMPING REQUIREMENTS......Page 58
3.5 RESIDENCE TIME DISTRIBUTION OF FLUID ELEMENTS AND PARTICLES......Page 60
3.6 FORCES ACTING ON FLUID ELEMENTS AND PARTICLES DURING FLOW......Page 62
4.1 CONVECTIVE HEAT TRANFER COEFFICIENT......Page 68
4.3 DIMENSIONLESS NUMBERS GOVERNING HEAT TRANSFER......Page 69
4.4 NATURAL (FREE) AND FORCED CONVECTION......Page 71
4.6 HYDRODYNAMIC AND THERMAL ENTRANCE LENGTHS......Page 72
4.7 HEAT TRANSFER COEFFICIENT IN STRAIGHT TUBES......Page 73
4.9 HEATING MEDIA AND EQUIPMENT......Page 76
4.10 COCURRENT AND COUNTERCURRENT HEAT EXCHANGERS......Page 77
4.11 GOVERNING HEAT TRANSFER EQUATIONS AND ENERGY BALANCE......Page 78
4.11.2 ENERGY BALANCE IN THE HOLDING TUBE......Page 79
4.13 TECHNIQUES TO ESTIMATE THE TEMPERATURE HISTORY OF A PRODUCT......Page 80
5.1 FEDERAL REGULATIONS AND HACCP......Page 81
5.2 KINETICS OF MICROBIAL DESTRUCTION, ENZYME INACTIVATION, AND NUTRIENT RETENTION......Page 82
5.2.1 PROCESS LETHALITY AND COOK VALUES......Page 83
6 FROM AN IDEA TO COMMERCIALIZATION......Page 85
NOMENCLATURE......Page 88
GREEK LETTERS......Page 90
REFERENCES......Page 91
1 INTRODUCTION......Page 95
2.1.3 MUTUAL DIFFUSION......Page 97
2.1.8 SURFACE DIFFUSION......Page 99
2.3 CHARACTERZATION OF SHAPE FOR MODELING MOISTURE DIFFUSION IN GRAINS......Page 100
3.1 THEORETICAL CONSIDERATION......Page 101
3.2 BOUNDARY CONDITION......Page 102
3.3 NUMERICAL FORMULATION......Page 103
4.2 MOISTURE DIFFUSIVITY DETERMINATION......Page 104
4.2.1 GERM......Page 105
4.2.2 PERICARP......Page 109
4.2.3 SOFT AND HARD ENDOSPERMS......Page 114
4.3 FINITE-ELEMENT SIMULATION OF CORN MOISTURE ADSORPTION......Page 119
5 RECOMENDATION......Page 122
NOMENCLATURE......Page 123
REFERENCES......Page 124
1 INTRODUCTION......Page 127
1.1.1 BATCH FRYERS......Page 128
1.1.2 CONTINUOS FRYERS......Page 129
1.2.2 FRYING TIME......Page 131
1.2.4 THE PRODUCT......Page 132
1.3 DEEP-FAT FRYING PROCESS......Page 133
2.1 MODEL DEVELOPMENT......Page 134
2.1.1 ASSUMPTIONS......Page 135
2.1.2 GOVERNING EQUATIONS......Page 136
2.2.1 DISCRETIZATION OF THE GOVERNING EQUATIONS......Page 139
2.2.2 GRID SENSITIVITY AND STABILITY......Page 143
3.1 THERMAL AND PHYSICAL PROPERTIES USED IN THE MODEL......Page 145
3.2.3 TEMPERATURE MEASUREMENTS......Page 147
3.3.1 TEMPERATURE CHANGES DURING FRYING......Page 148
3.3.3 OIL CONTENT CHANGES DURING FRYING......Page 150
3.4.1 FRYING OIL TEMPERATURE......Page 151
3.4.2 TORTILLA CHIP THICKNESS......Page 152
3.4.3 INITIAL MOISTURE CONTENT......Page 153
3.4.4 BATCH FRYING PROCESS......Page 154
3.5 OBSERVATIONS......Page 155
NOMENCLATURE......Page 156
REFERENCES......Page 158
1 INTRODUCTION......Page 159
2.1 GOVERNING EQUATIONS......Page 161
2.4 NUMERICAL SOLUTION TECHNIQUES......Page 163
2.6 TYPICAL RESULTS......Page 164
3.1 GOVERNING EQUATIONS OF HEAT TRANSFER......Page 168
3.2 BUOUNDARY CONDITIONS FOR HEAT TRANSFER......Page 169
3.5 EXPERIMENTAL VERIFICATIONS......Page 170
3.6 TYPICAL RESULTS......Page 171
4 SIMPLIFIED ELECTROMAGNETIC MODEL: HEAT TRANSFER IN SOLIDS WITH NO INTRNAL MOISTURE TRANSFER......Page 172
4.2 TEMPERATURE PROFILES......Page 173
5.1 A SIMPLE HEAT TRANSFER MODEL CONSIDERING THE PRESENCE OF EVAPORATION......Page 174
5.2 GOVERNING EQUATIONS FOR A MULTIPHASE POROUS MEDIA MODEL......Page 177
5.3 BOUNDARY AND INITIAL CONDITIONS......Page 181
5.6 EXPERIMANTAL AND OTHER VERIFICATION......Page 182
5.8 SENSITIVITY ANALYSIS AND USE IN DESIGN......Page 183
6.2 BOUNDARY CONDITIONS......Page 188
6.3 INPUT PARAMETERS......Page 189
6.7 SENSITIVITY ANALYSIS AND USE DESIGN......Page 190
7 SIMPLFIED ELCTROMAGNETIC MODEL: CONTINUOS HEATING OF LIQUIDS......Page 191
7.3 TEMPERATURE AND VELOCITY PROFILES......Page 193
7.4 SENSITIVITY ANALYSIS AND USE DESIGN......Page 194
REFERENCES......Page 196
1 INTRODUCTION......Page 200
3 APPLICATIONS TO BIOLOGICAL MATERIALS......Page 203
3.2 APPLICATIONS INVOLVING LEGUME AND OIL-BEARING MATERIALS......Page 205
3.3 APPLICATIONS INVOLVING CEREAL GRAINS......Page 208
3.4 OTHER APPLICATIONS......Page 209
4.1 MODEL DEVELOPMENT......Page 215
4.2.1 MASS TRANSFER......Page 219
4.2.2 HEAT TRANSFER......Page 220
4.3 SIMULATION RESULTS......Page 223
NOMECLATURE......Page 231
REFERENCES......Page 232
1.1 CONVENTIONAL PROCESSES FOR HEATING FOODS......Page 236
1.2 HEAT GENERATION: ELECTRICAL RESISTANCE HEATING......Page 238
1.3 MODELING OHMIC HEATING......Page 240
2.1 GOVERNING THERMAL EQUATIONS......Page 241
3.1 PERCOLATION APPROACH......Page 245
3.2 EFFECTIVE CONDUCTIVITY OF A TWO-COMPONENETS FOOD MIXTURE......Page 246
3.2.1 CLASSIC PERCOLATION THRESHOLD PROBLEM......Page 247
3.2.2 EFFECTIVE MEDIUM APPROXIMATION......Page 248
3.2.3 DEMONSTRATION OF MEAN CONDUCTIVITY......Page 250
4.1 INTRODUCTION......Page 251
4.2 VALIDATION......Page 252
4.3 USE OF MODEL TO STUDY "SHADOW EFFECT" AROUND PARTICLES......Page 255
5 MODELS FOR FLOW AND HEAT GENERETION......Page 260
5.1 MODELING THE OHMIC HEATER......Page 261
5.2 HOLDING AND COOLING SECTIONS......Page 262
6 THERMAL HOMOGENEITY FOR DIFFERENT PROCESSES:CONCEPTUAL MODELS......Page 264
7 DISCUSSION AND CONCLUSIONS......Page 269
NOMENCLATURE......Page 271
REFERENCES......Page 272
1 INTRODUCTION......Page 275
2 NUMERICAL COMPUTATION OF CONDUCTION HEAT TRANSFER......Page 277
3.1 RANDOM VARIABLES......Page 279
3.2 RANDOM PROCESSES......Page 280
4.1 DESCRIPTION......Page 284
4.2 GENERATION OF RANDOM VERIABLES AND PROCESSES......Page 286
5.1 LUMPED-CAPACITANCE HEAT-CONDUCTION PROBLEMS......Page 288
5.2 HEAT-CONDUCTION PROBLEMS......Page 293
5.3 ALGORITHM FOR RANDOM VARIABLE PARAMETERS......Page 297
6.1 ALGEBRAIC LYAPUNOV AND SYLVESTER EQUATIONS......Page 300
6.2 CONVERGENCE AND STABILITY ANALYSIS......Page 302
7 APPLICATION TO THERMAL STERILIZATION PROCESSES......Page 309
8 CONCLUSIONS......Page 310
NOMENCLATURE......Page 311
REFERENCES......Page 312
1 INTRODUCTION......Page 315
2 BRIEF HISTORICAL PERSPECTIVE......Page 316
3 BIOLOGICAL NEURON......Page 317
4 OPERATION OF A SINGLE ARTIFICIAL NEURON......Page 319
5.1 ASSOCIATIVE AND NONASSOCIATIVE LEARNING......Page 322
5.2.1 DELTA RULE FOR SUPERVISED LEARNING IN SINGLE-LAYER NETWORKS......Page 323
5.2.2 GENERALIZED DELTA RULE FOR MULTILAYER FEEDFORWARD NETWORKS......Page 324
6 NEURAL NETWORKS ARCHITECTURES......Page 327
7.1 RADIAL BASIS FUNCTION NETWORKS......Page 328
7.4 HOPEFIELD NETWORKS......Page 329
7.5 ADAPTIVE RESONANCE THEORY NETWORKS......Page 330
8.2 NUMBER OF SAMPLES AND DATA PREPROEESSING......Page 331
8.5 WEIGHT INITIALIZATION AND CHOICE OF LEARNING PARAMETERS......Page 332
8.6 PERFORMANCE ASSESSMENT......Page 333
9.1 PRODUCT GRADING AND CLASSIFICATION......Page 334
9.2 FOOD QUALITY ASSESSMENT......Page 335
9.3 MODELING OF COMPLEX PROCESSES......Page 336
9.4 PROCESS CONTROL APPLICATIONS......Page 337
10.1 GRADING OF TOMATOES BASED ON RGB COLOR COMPONENTS......Page 338
10.2 ESTIMATION OF SENSORY STICKINESS SCORES OF COOKED RICE......Page 339
10.3 MOISTURE CONTENT CHANGES IN DEEP-BED DRYING OF ROUGH RICE......Page 342
10.4 MODELING OF TRANSIENT CONDUCTION HEATING AND COOLING IN A SPHERE......Page 343
11 CONCLUDING REMARKS......Page 345
NOMENCLATURE......Page 346
REFERENCES......Page 347