Food Emulsions

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Examines droplet flocculation and coalescence in dilute oil-in-water emulsions, beverage emulsions, rheology of concentrated emulsions, surface forces in emulsions, molecular organization in lipids, and food emulsifiers.

Author(s): Stig Friberg, Kare Larsson, Johan Sjoblom
Series: Food Science and Technology
Edition: 4
Publisher: CRC Press
Year: 2003

Language: English
Pages: 640

FOOD EMULSIONS FOURTH EDITION, REVISED AND EXPANDED......Page 1
PREFACE TO THE FOURTH EDITION......Page 10
PREFACE TO THE THIRD EDITION......Page 12
CONTRIBUTORS......Page 15
CONTENTS......Page 13
CONTENTS......Page 0
A. GENERAL INTRODUCTION......Page 17
B. EMULSION TYPES......Page 18
A. GENERAL ASPECTS OF EMULSIONS......Page 20
B. LIPIDS AND EMULSION FUNCTIONALITY......Page 21
C. THE INTERFACIAL LAYER......Page 22
D. THE CONTINUOUS PHASE......Page 25
B. PROTEINS......Page 27
C. ADSORPTION AND PROTEIN CONFORMATION......Page 28
IV. FORMATION OF EMULSIONS AND MEASUREMENT OF EMULSIFYING ACTIVITY OF PROTEINS......Page 31
V. MEASUREMENT OF PARTICLE SIZES AND SIZE DISTRIBUTIONS IN EMULSIONS......Page 34
B. INTERFACES WITH ADSORBED PROTEINS......Page 39
C. EMULSIONS STABILIZED BY PARTICLES......Page 43
A. INTERFACES CONTAINING MIXTURES OF PROTEINS......Page 45
B. ADDITION OF SMALL-MOLECULE EMULSIFIERS TO A PROTEIN-STABILIZED EMULSION......Page 47
C. CHEMICAL MODIFICATION OF THE INTERFACIAL LAYER......Page 50
VIII. CONCLUDING REMARKS......Page 52
REFERENCES......Page 53
I. INTRODUCTION......Page 61
A. MONOGLYCERIDES......Page 62
B. ORGANIC ACID ESTERS OF MONOGLYCERIDES......Page 69
D. LACTIC ACID ESTERS (LACTEM)......Page 71
E. DIACETYL TARTARIC ACID ESTERS (DATEM)......Page 72
G. SUCCINIC ACID ESTERS (SMG)......Page 74
H. POLYGLYCEROL ESTERS OF FATTY ACIDS (PGE)......Page 75
J. PROPYLENE GLYCOL ESTERS OF FATTY ACIDS (PGMS)......Page 77
1. SORBITAN ESTERS OF FATTY ACIDS (SMS, STS)......Page 78
2. POLYOXYETHYLENE SORBITAN ESTERS......Page 79
M. LECITHIN......Page 80
III. LYOTROPIC MESOMORPHISM......Page 81
A. LAMELLAR PHASE......Page 83
B. PHASE BEHAVIOR OF MONOGLYCERIDE–WATER SYSTEMS......Page 84
C. DISPERSION STATE AND CRYSTALLINE HYDRATES......Page 88
1. POLYGLYCEROL ESTERS......Page 90
2. ORGANIC ACID ESTERS......Page 91
3. STEAROYL LACTYLATES......Page 92
5. POLYSORBATES......Page 94
E. THE ALFA-CRYSTALLINE GEL STATE......Page 95
G. POLAR LIPID–WATER PHASES OF NATURAL ORIGIN......Page 101
A. EMULSIFICATION AND EMULSION STABILITY......Page 102
C. INTERACTION WITH STARCH COMPONENTS......Page 103
D. DOUGH-STRENGTHENING EFFECTS OF EMULSIFIERS......Page 104
V. CONCLUDING REMARKS......Page 105
REFERENCES......Page 106
II. THE SOLID STATE......Page 108
B. MOLECULAR ORIENTATION IN LIPID CRYSTALS......Page 109
C. HYDROCARBON CHAIN PACKING......Page 110
E. FATTY ACIDS......Page 112
G. DIGLYCERIDES AND TRIGLYCERIDES......Page 114
III. LIQUID-CRYSTALLINE PHASES......Page 115
B. LAMELLAR LIQUID CRYSTALS......Page 117
D. CUBIC LIQUID-CRYSTALLINE PHASES......Page 118
REFERENCES......Page 120
I. INTRODUCTION......Page 122
II. LIPIDS......Page 124
III. PROTEINS......Page 128
A. IN SOLUTION......Page 131
1. ANIONIC......Page 133
3. CATIONIC......Page 137
4. EFFECT OF SOLUTION CONDITIONS......Page 138
B. AT INTERFACES......Page 140
2. DISPLACEMENT......Page 142
3. INCREASED SURFACE ACTIVITY OF THE LIPID–PROTEIN COMPLEX......Page 146
5. PROTEIN–LIPID INTERACTIONS AT THE INTERFACE......Page 148
V. INTERACTIONS BETWEEN PROTEINS AND WATER-INSOLUBLE LIPIDS......Page 151
1. DRIVING FORCE FOR LIPID–PROTEIN INTERACTIONS......Page 153
2. STRUCTURE OF THE INTERFACIAL FILM......Page 157
3. MONOLAYER STABILITY......Page 159
B. PROTEIN-LIPID INTERACTIONS AT THE OIL–AQUEOUS INTERFACE......Page 161
C. PROTEIN INTERACTIONS WITH LIPID VESICLES......Page 163
1. DRIVING FORCE FOR THE PROTEIN–VESICLE INTERACTION......Page 164
2. INFLUENCE OF THE PROTEIN STRUCTURE ON THE VESICLE INTERACTION......Page 166
D. PROTEIN INTERACTION WITH LIQUID-CRYSTALLINE PHASES/GEL PHASES......Page 167
1. PROTEIN INTERACTIONS THAT INCREASE THE CURVATURE OF THE LIPID–AQUEOUS INTERFACES......Page 169
2. PROTEIN INTERACTIONS THAT DECREASE THE CURVATURE OF THE LIPID–AQUEOUS INTERFACES......Page 171
3. CUBIC LIPID–PROTEIN AQUEOUS PHASES......Page 172
4. LIPASE ACTION ON LIQUID-CRYSTALLINE PHASES......Page 176
REFERENCES......Page 178
I. INTRODUCTION......Page 189
A. KINETIC AND THERMODYNAMIC STABILITY IN MACROEMULSIONS AND MINIEMULSIONS......Page 191
B. CURRENT STATE OF EMULSION STABILITY SCIENCE......Page 192
C. SPECIFICITY OF EMULSION CHARACTERIZATION......Page 193
A. SINGLET–DOUBLET QUASIEQUILIBRIUM......Page 194
B. KINETIC EQUATION FOR COUPLING OF FLOCCULATION AND INTRADOUBLET COALESCENCE IN MONODISPERSE EMULSIONS......Page 196
C. COALESCENCE IN A SINGLET–DOUBLET SYSTEM AT QUASIEQUILIBRIUM......Page 197
D. REDUCED ROLE OF FRAGMENTATION WITH DECREASING C......Page 199
1. VIDEO-ENHANCED MICROSCOPY (MICROSLIDE PREPARATIVE TECHNIQUE) FOR INVESTIGATION OF SINGLET–DOUBLET EQUILIBRIUM AND INTRADOUBLET COALESCENCE (29–31)......Page 200
2. IMPROVING THE EXPERIMENTAL TECHNIQUE WITH THE USE OF LOW-DENSITY CONTRAST EMULSIONS (30)......Page 201
3. MEASUREMENT OF COALESCENCE TIME AND DOUBLET FRAGMENTATION TIME......Page 202
F. PERSPECTIVE FOR GENERALIZATION OF THE THEORY FOR COUPLING OF COALESCENCE AND FLOCCULATION......Page 203
A. GENERAL......Page 204
B. AVERAGE MODELS......Page 205
1. THE MODEL OF BORWANKAR ET AL.......Page 206
C. THE DIGB MODEL FOR SIMULTANEOUS COAGULATION AND COALESCENCE......Page 208
A. THEORY OF DOUBLET FRAGMENTATION TIME......Page 212
B. DOUBLET FRAGMENTATION TIME OF UNCHARGED DROPLETS......Page 213
C. LIFETIME OF A DOUBLET OF CHARGED DROPLETS AND COAGULATION/FLOCCULATION......Page 215
V. COALESCENCE COUPLED WITH EITHER COAGULATION OR FLOCCULATION IN DILUTE EMULSIONS......Page 216
A. FRAGMENTATION OF PRIMARY FLOCS IN EMULSIONS AND THE SUBSEQUENT REDUCTION OF COALESCENCE......Page 217
B. DOMAINS OF COALESCENCE COUPLED EITHER WITH COAGULATION OR WITH FLOCCULATION......Page 219
VI. APPLICATIONS......Page 222
A. LONG-TERM PREDICTION OF EMULSION STABILITY......Page 223
1. COMBINING SURFACTANTS AND POLYMERS IN EMULSION STABILIZATION......Page 224
2. THERE IS A STRONG INFLUENCE OF LOW CONCENTRATIONS OF IONIC SURFACTANT ON DOUBLET FRAGMENTATION TIME AND COALESCENCE TIME......Page 225
1. GENERAL......Page 226
2. COMBINED APPROACH IN INVESTIGATIONS OF DILUTE AND CONCENTRATED EMULSIONS......Page 227
4. THE SIMPLEST EMULSION STATE FOR WHICH INVESTIGATION CAN PROVIDE INFORMATION ABOUT COALESCENCE IS AT SINGLET–DOUBLET QUASIEQUILIBRIUM WITH SLOW COALESCENCE WITHIN THE DOUBLETS......Page 228
VII. SUMMARY......Page 229
REFERENCES......Page 230
I. INTRODUCTION......Page 234
B. MESOPHASE PREPARATION......Page 236
C. BACKLIGHT-SCATTERING EXPERIMENT......Page 238
D. FILM RHEOLOGY AND FILM THICKNESS STABILITY......Page 239
E. FOAM FILM AIR PERMEABILITY......Page 241
F. MEASUREMENT OF OVERRUN AND BUBBLE SIZE......Page 242
G. MEASUREMENT OF GAS DIFFUSION......Page 243
A. FAT PARTICLE STRUCTURE VARIATION DURING HOMOGENIZATION......Page 244
B. FAT PARTICLE STRUCTURE DURING COOLING......Page 245
C. FAT PARTICLE STRUCTURE DURING AGING......Page 247
E. FAT PARTICLE STRUCTURE DURING THE WHIPPING PROCESS......Page 248
F. FILM TENSION, ELASTICITY, AND THICKNESS STABILITY......Page 251
G. FOAM FILM AIR PERMEABILITY......Page 254
H. LONG-TERM STABILITY OF MODEL AERATED FOOD EMULSIONS......Page 256
1. MEASUREMENT OF THE GAS-DIFFUSION RATE......Page 257
2. OSTWALD RIPENING MODEL AND THE GAS-DIFFUSION MODEL......Page 259
3. MODEL PREDICTION......Page 261
4. APPLICATION OF MODEL IN PREDICTING LONG-TERM STABILITY OF AN AERATED EMULSION SYSTEM......Page 263
IV. CONCLUSIONS......Page 265
REFERENCES......Page 266
I. INTRODUCTION......Page 269
II. INTERACTIONS AND HOLE FORMATION......Page 270
A. HYDRODYNAMIC INTERACTIONS......Page 271
A. VAN DER WAALS FORCES......Page 273
B. ELECTROSTATIC DOUBLE-LAYER FORCES......Page 274
D. POLYMER-INDUCED FORCES......Page 275
E. COALESCENCE AND HOLE FORMATION......Page 277
A. INTERFEROMETRIC SURFACE FORCE APPARATUS......Page 280
B. THE BIMORPH SURFACE FORCE APPARATUS......Page 282
C. DERJAGUIN APPROXIMATION......Page 283
D. THIN-FILM PRESSURE BALANCE......Page 284
A. IONIC SURFACTANTS ON HYDROPHOBIC SURFACES......Page 287
B. NONIONIC SURFACTANTS ON HYDROPHOBIC SURFACES......Page 290
C. NONIONIC POLYMERS ON HYDROPHOBIC SURFACES......Page 292
D. POLYELECTROLYTES ON SURFACES......Page 294
E. PROTEINS ON HYDROPHOBIC SURFACES......Page 296
F. PHOSPHOLIPIDS ON POLAR SURFACES IN OIL......Page 299
G. POLYMERS ON POLAR SURFACES IN OIL......Page 300
H. FORCES BETWEEN SURFACES ACROSS EMULSIONS......Page 302
I. FORCES DUE TO STRATIFICATION IN FOAM AND PSEUDOEMULSION FILMS......Page 305
REFERENCES......Page 306
B. ADSORBED PROTEIN LAYERS......Page 310
C. COMPLEXITY OF PROCESSES PRECEDING COALESCENCE IN FOOD EMULSIONS......Page 312
D. AIM OF THIS WORK......Page 313
A. THIN FILMS......Page 314
III. HOMOGENEOUS COALESCENCE......Page 316
1. RUPTURE BY THE PRESENCE OF VACANCIES......Page 317
2. RUPTURE BY SPONTANEOUS PASSAGE FORMATION......Page 318
3. RUPTURE BY FILM STRETCHING......Page 319
1. DROPLET ENCOUNTER UNDER QUIESCENT AND GENTLE-FLOW CONDITIONS......Page 322
2. DROPLET ENCOUNTER IN TURBULENT FLOW......Page 323
IV. SURFACE-INTERMEDIATED COALESCENCE......Page 325
B. COALESCENCE INTERMEDIATED BY A LIQUID INTERFACE......Page 326
C. COALESCENCE BY SHEARING IN CONFINED SPACES......Page 329
D. RUPTURE BY PENETRATION OF PARTICLES......Page 330
REFERENCES......Page 332
I. INTRODUCTION......Page 337
II. THEORETICAL APPROACHES......Page 338
A. SMOLUCHOWSKI THEORY......Page 340
1. PARTICLES ARE SPHERICAL IN SHAPE AFTER COLLISION......Page 341
2. ALL COLLISIONS LEAD TO IMMEDIATE AND COMPLETE COALESCENCE......Page 343
3. THERE IS NO FRACTURE OF PARTICLES OR AGGREGATES......Page 345
5. PARTICLES ARE OF IDENTICAL SIZE......Page 346
C. TRAJECTORY ANALYSIS......Page 347
III. EXPERIMENTS IN FOOD SYSTEMS......Page 351
1. EMULSIONS CONTAINING LIQUID DROPLETS......Page 352
2. EMULSIONS CONTAINING SEMICRYSTALLINE DROPLETS......Page 354
B. TWO-PARTICLE AGGREGATION UNDER SHEAR......Page 355
IV. CONCLUSIONS......Page 356
REFERENCES......Page 357
I. OPENING REMARKS......Page 362
II. INTRODUCTION......Page 363
III. PREPARATION ROUTES: THE EMULSIFIERS......Page 364
IV. THE OIL PHASE......Page 370
V. STABILITY CONSIDERATIONS......Page 371
VI. RELEASE CONSIDERATIONS......Page 375
VII. STABILIZATION BY MACROMOLECULAR AMPHIPHILES......Page 377
A. PROTEIN–POLYSACCHARIDE INTERACTIONS IN AQUEOUS MEDIUM......Page 380
B. PROTEIN–POLYSACCHARIDE INTERACTIONS IN EMULSION......Page 381
C. DOUBLE EMULSION STABILIZED WITH PROTEIN–POLYSACCHARIDE HYBRIDS......Page 387
1. RHEOLOGY......Page 388
2. EFFECT OF PH ON DOUBLE-EMULSION STABILITY......Page 390
3. ENTRAPMENT IN DOUBLE EMULSIONS (VITAMIN B1)......Page 391
IX. STABILIZATION BY SOLID PARTICLES......Page 392
X. STABILIZATION BY INCREASED VISCOSITY......Page 395
XI. MICROCAPSULES OR MICROSPHERES IN THE INTERNAL PHASE......Page 397
A. CONTROLLED DELIVERY APPLICATIONS......Page 398
B. DOUBLE-EMULSIONS SOLVENT-EXTRACTION TECHNIQUES FOR PREPARATION OF MICROSPHERES......Page 399
XIII. O/W/O DOUBLE EMULSIONS......Page 402
XIV. MULTIPLE-EMULSION RHEOLOGY......Page 404
XV. CONCLUDING REMARKS......Page 411
REFERENCES......Page 412
I. BACKGROUND......Page 422
II. INTRODUCTION......Page 423
III. STRUCTURAL ELEMENTS......Page 426
A. MONODISPERSE, PERFECTLY ORDERED 2D SYSTEM......Page 429
B. POLYDISPERSE 2D SYSTEMS......Page 435
C. MONODISPERSE 3D SYSTEMS......Page 437
D. POLYDISPERSE 3D SYSTEMS......Page 442
B. VAPOR PRESSURES OF CONTINUOUS AND DISPERSED PHASES......Page 444
C. GRADIENT IN / IN GRAVITATIONAL FIELD......Page 445
D. EXPERIMENTAL DETERMINATION OF PI FOR REAL SYSTEMS......Page 447
E. GRAVITATIONAL SYNERESIS OR CREAMING......Page 450
F. INCREASE IN SPECIFIC SURFACE AREA WITH /......Page 451
G. SURFACE AREA IN FILMS VERSUS TOTAL SURFACE AREA......Page 453
A. DRY-FOAM LIMIT (Ó=1)......Page 454
B. FOAMS WITH FINITE LIQUID CONTENT (Ó< 1)......Page 455
VII. MECHANICAL AND RHEOLOGICAL PROPERTIES......Page 456
1. ELASTIC AND YIELD PROPERTIES: SHEAR MODULUS AND YIELD STRESS......Page 457
2. SHEAR VISCOSITY......Page 466
B. EXPERIMENTAL APPROACHES AND RESULTS......Page 471
1. SYSTEM CHARACTERIZATION......Page 472
2. RHEOLOGICAL EVALUATION......Page 473
3. EXPERIMENTAL RESULTS......Page 476
VIII. ADDITIONAL AREAS OF INTEREST......Page 484
IX. POSTSCRIPT......Page 485
LATIN SYMBOLS......Page 486
GREEK SYMBOLS......Page 487
REFERENCES......Page 488
I. INTRODUCTION......Page 493
II. DEFINITION......Page 494
2. WEIGHTING AGENTS......Page 495
2. HYDROCOLLOIDS......Page 502
5. COLORINGS......Page 507
B. STEP 2. PREHOMOGENIZATION......Page 508
IV. STABILITY PROBLEMS......Page 509
A. CREAMING......Page 510
V. STABILIZATION OF BEVERAGE EMULSIONS......Page 511
A. STOKES’ LAW......Page 512
B. ADSORPTION AT INTERFACES......Page 513
C. ELECTROSTATIC INTERACTION......Page 518
VI. PARTICLE SIZE CHARACTERIZATION......Page 520
B. LIGHT-SCATTERING DETERMINATION......Page 522
C. LASER DIFFRACTION TECHNIQUE......Page 523
VII. STABILITY CRITERIA SETTING......Page 524
REFERENCES......Page 527
I. INTRODUCTION......Page 533
A. MICROSTRUCTURE OF DRESSINGS AND SAUCES......Page 536
B. RHEOLOGY OF DRESSINGS AND SAUCES......Page 537
E. NONCLASSIC DRESSINGS AND SAUCES......Page 538
A. INTRODUCTION......Page 539
B. MAYONNAISE AND SPOONABLE SALAD DRESSINGS......Page 542
1. KETCHUP......Page 544
A. INTRODUCTION......Page 546
B. RHEOLOGICAL MEASUREMENTS......Page 548
C. EMULSION RHEOLOGY......Page 549
A. INTRODUCTION......Page 551
B. THEORETICAL CONSIDERATIONS......Page 552
2. STERIC STABILIZATION......Page 553
4. PARTICLE STABILIZATION......Page 554
C. EMULSIFIERS AND STABILIZERS......Page 555
1. EGGS......Page 557
3. DAIRY PROTEINS......Page 558
E. PRACTICAL CONSIDERATIONS......Page 559
V. PROCESSING OF DRESSINGS AND SAUCES......Page 560
A. DROP BREAKAGE......Page 562
B. EMULSIFIER EFFECT......Page 565
C. PROCESS DESIGN AND EQUIPMENT SELECTION......Page 568
VI. NONCLASSIC DRESSINGS AND SAUCES......Page 571
VII. CONCLUSIONS AND PROGNOSTICATION......Page 574
REFERENCES......Page 575
A. INTRODUCTION......Page 581
B. ULTRASONIC PROPAGATION IN FOOD EMULSIONS......Page 582
1. MONOPOLE SCATTERING COEFFICIENT, AM......Page 584
3. LIMITATIONS OF THE THEORY......Page 585
C. ULTRASONIC MEASUREMENTS......Page 589
A. DROPLET CONCENTRATION......Page 591
B. PARTICLE SIZE......Page 592
D. GRAVITATIONAL SEPARATION......Page 593
E. DROPLET CRYSTALLIZATION......Page 594
III. CONCLUSIONS......Page 596
REFERENCES......Page 597
I. INTRODUCTION......Page 601
A. FUNDAMENTALS......Page 602
C. DYNAMIC PARAMETERS......Page 604
D. MEASUREMENT OF SELF-DIFFUSION......Page 606
A. DETERMINATION OF EMULSION DROPLET RADII BY MEANS OF THE NMR DIFFUSOMETRY METHOD......Page 610
B. APPLICATIONS OF NMR TECHNIQUES TO INVESTIGATE DIFFUSION AND FLOW IN FOOD EMULSIONS......Page 614
IV. NMR DIFFUSION STUDIES OF CONCENTRATED EMULSIONS......Page 615
V. NMR DIFFUSION STUDIES OF MULTIPLE EMULSIONS......Page 618
VI. DETERMINATION OF THE EMULSION COMPOSITION......Page 620
VIII. DETERMINATION OF EMULSION SHELF LIFE AND EMULSION STABILITY......Page 622
A. IDENTIFICATION OF THE DISPERSED PHASE IN EMULSIONS......Page 624
B. STUDY OF THE PROPERTIES OF THE CONTINUOUS PHASE......Page 625
D. MOLECULAR ORGANIZATION FROM RELAXATION MEASUREMENTS......Page 627
X. DEGREE OF SOLIDIFICATION OF THE DISPERSED PHASE......Page 628
A. DETERMINATION OF THE SOLID FAT CONTENT......Page 629
B. STUDIES OF THE EMULSION STABILITY......Page 633
REFERENCES......Page 635