Text reviews current and emerging techniques in food authenticity and traceability. For professionals working in food safety and quality.
Author(s): Michele Lees
Series: Woodhead Publishing in food science and technology
Edition: illustrated edition
Publisher: Woodhead Pub.; CRC Press
Year: 2003
Language: English
Pages: 584
City: Cambridge :, Boca Raton, FL
Food authenticity and traceability......Page 1
Contents......Page 5
Contributor contact details......Page 13
The Humber Institute of Food & Fisheries......Page 18
1.1 Introduction......Page 20
Table of Contents......Page 0
Part I: Methods for authentication and traceability......Page 19
1.1.1 How PCR techniques work......Page 21
1.2.1 Qualitative techniques......Page 23
1.2.2 Quantitative techniques......Page 26
1.3 Method validation......Page 31
1.4.1 Multiplex PCR......Page 32
1.4.2 PNA/LNA PCR......Page 33
1.5 Applying PCR techniques: identifying genetically modified organisms in food......Page 35
1.6 Applying PCR techniques: molecular markers and identification of cultivar or breed......Page 39
1.6.1 PCR based molecular markers......Page 40
1.6.2 Application of molecular markers to food......Page 44
1.7 Future trends: PCR and identity preservation of foods......Page 46
1.8 References......Page 47
1.9 Acknowledgements......Page 50
2.1 Introduction......Page 51
2.2.1 Hybridisation methods......Page 52
2.2.4 PCR-RFLP on mitochondrial DNA......Page 53
2.2.6 PCR of repetitive elements and the detection of hybrid species......Page 57
2.3.1 Analysis of feedstuff......Page 58
2.3.2 Fish species......Page 59
2.4.2 Animal breeds......Page 61
2.5.1 Considerations of validation......Page 62
2.7 References......Page 63
3.1 Introduction......Page 71
3.2 Principles of enzyme immunoassays......Page 72
3.2.1 Assay formats......Page 75
3.2.2 Sensitivity and specificity......Page 76
3.3.1 Meat and meat products......Page 77
3.3.2 Milk and milk products......Page 79
3.3.3 Other applications......Page 80
3.4 Advantages and disadvantages......Page 81
3.5 Sources of further information and advice......Page 82
3.6 References......Page 83
4.1 Introduction......Page 88
4.2 The importance of proteomics and metabolomics......Page 89
4.3.1 2D-GE-MS......Page 91
4.3.2 MS of peptides after LC or CE separations......Page 94
4.3.4 Protein-protein interactions and post-translational modification......Page 95
4.4 Metabolome analysis......Page 97
4.5.1 Vibrational spectroscopies......Page 100
4.5.3 Mass spectrometric methods......Page 103
4.5.4 Bioinformatics and chemometrics......Page 106
4.6 Applications: rapid authentication of food components......Page 107
4.7 Future trends......Page 109
4.8 Sources of further information and advice......Page 110
4.9 References......Page 111
5.1 Introduction......Page 118
5.2.1 Theory behind NIR measurement......Page 120
5.2.2 Characteristics of NIR technology......Page 123
5.2.3 Technologies for implementing NIR measurement......Page 125
5.3.1 On-line NIR Instrumentation......Page 127
5.3.2 Laboratory NIR instrumentation......Page 132
5.4 Multi-component analysis of food products......Page 135
5.5 Advantages and disadvantages......Page 137
5.6 On-line applications......Page 141
5.7 Future trends......Page 144
5.8 References......Page 146
6.1 Introduction......Page 148
6.2 Using NMR spectroscopy: sample preparation......Page 149
6.3 Data recording and processing......Page 150
6.3.1 Data processing and file conversion......Page 152
6.3.2 Data preparation for chemometrics......Page 153
6.4.2 Chemometrics......Page 154
6.5 Advantages and disadvantages of the NMR technique......Page 155
6.6.1 Vegetable oils......Page 157
6.6.2 Fish oils......Page 159
6.6.3 Fruit juices......Page 160
6.6.4 Wine/beer......Page 161
6.6.6 Green tea......Page 162
6.6.8 Fish and meat......Page 164
6.6.9 Miscellaneous studies......Page 165
6.8 Sources of further information and advice......Page 166
6.9 References......Page 167
7.1.1 Definition of stable isotopes......Page 173
7.1.2 Isotope terminology and delta scales......Page 174
7.1.3 `Delta' notation and isotope referenc e materials......Page 177
7.2 Principles of operation of IRMS......Page 179
7.2.1 Ion separation ± equations of motion......Page 181
7.2.3 Preparation of samples for DI-IRMS......Page 182
7.2.5 Recent instrumental developments in CF-IRMS......Page 184
7.3 Current applications: adulteration of fruit juice, honey and wine......Page 186
7.3.1 Apple juice......Page 187
7.3.2 Honey......Page 188
7.3.3 Orange juice......Page 189
7.3.4 Wine......Page 190
7.4 New applications: determining the geographical origin of foods......Page 191
7.5 Future trends: position-specific isotope analysis (PSIA)......Page 195
7.6 Conclusion......Page 197
7.7 References......Page 198
8.1.1 Principles of spectrophotometric techniques......Page 201
8.2 Ultraviolet spectroscopy: detecting fruit and vegetable oil adulteration......Page 202
8.2.2 UV control of food......Page 203
8.3.1 IR spectrophotometer......Page 204
8.3.2 IR control of food......Page 205
8.4.2 Fluorimetric control of food......Page 207
8.5 Raman spectroscopy for food authentication......Page 208
8.5.2 Raman control of food......Page 210
8.7 References......Page 211
9.1 Introduction......Page 214
9.2 Principles and technologies......Page 215
9.2.1 The practice of gas chromatography......Page 216
9.3 Sample preparation......Page 219
9.4 Applications: identifying flavour compounds......Page 221
9.5 Advantages and disadvantages of gas chromatography......Page 229
9.5.1 Frequent problems in GC analysis......Page 231
9.6 References......Page 232
10.1.1 Principles and technologies......Page 235
10.2.2 Phenolic compounds, polyphenols, and dihydrochalcones......Page 238
10.2.5 Anthocyanins......Page 241
10.3.1 Olive oils......Page 242
10.3.2 Almond kernel oils......Page 244
10.4.2 Vanilla and saffron......Page 245
10.4.4 Soy products......Page 246
10.4.7 Essential oils......Page 247
10.4.10 Whiskey......Page 248
10.4.13 Cheese......Page 249
10.6 References......Page 250
11.1.1 Enzymatic analysis......Page 256
11.2 Analysing enzymes in sugars, acids, salts, alcohols and other compounds......Page 258
11.3.1 The analytes......Page 260
11.3.2 Reagents for enzymatic food analysis procedures......Page 261
11.3.5 Pipettes, dispensers......Page 262
11.4 Sample preparation......Page 263
11.4.3 The sample is liquid, turbid......Page 264
11.4.6 The sample is pasty or solid......Page 265
11.4.9 The sample contains CO......Page 266
11.5.1 Sample volume......Page 267
11.5.5 Photometric measurement......Page 268
11.5.8 Calculation......Page 269
11.5.10 Testing the methodology (recognising interference during the assay procedure)......Page 270
11.5.11 Automation......Page 272
11.6.1 Acetaldehyde......Page 273
11.6.4 L-Ascorbic acid (`vitamin C')......Page 274
11.6.6 Citric acid......Page 275
11.6.9 Formic acid......Page 276
11.6.12 D-Glucose (`grape sugar')......Page 277
11.6.14 Glycerol......Page 278
11.6.17 D- and L-Lactic acid......Page 279
11.6.18 Lactose (`milk sugar')......Page 280
11.6.21 L-Malic acid......Page 281
11.6.24 Oxalic acid......Page 282
11.6.27 D-Sorbitol......Page 283
11.6.30 Sucrose (`sugar', cane sugar, beet sugar)......Page 284
11.7.1 High specificity......Page 285
11.7.4 High precision......Page 286
11.7.7 Saving of time......Page 287
11.7.11 `Disadvantages'......Page 288
11.8 Future trends......Page 289
11.10 References and further reading......Page 290
12.1 Introduction......Page 292
12.2 Requirements for in-line sensors......Page 293
12.2.2 Industrial considerations......Page 294
12.3 Current commercial sensor systems......Page 295
12.3.2 Recent new instruments for process monitoring......Page 296
12.3.3 Portable analytical instrumentation in process monitoring......Page 298
12.4 In-line sampling......Page 301
12.4.1 Ultrafiltration and dialysis probes......Page 305
12.4.3 Ultrasonic standing waves......Page 307
12.4.4 Free flow electrophores is (FFE)......Page 309
12.4.5 Dielectrophoresis (DEP)......Page 310
12.4.6 Field flow fractionation (FFF)......Page 311
12.5 Future trends......Page 312
12.6 Sources of further information and advice......Page 313
12.7 References......Page 314
13.1 Introduction......Page 316
13.2.1 Data display......Page 317
13.3 Classification......Page 327
13.4 Modelling......Page 329
13.5 Calibration......Page 330
13.6 Variable selection......Page 332
13.7 Future trends......Page 334
13.8 Conclusion: The advantages and disadvantages of chemometrics......Page 335
13.9.1 Books......Page 336
13.10 References......Page 337
15.2 Species identification......Page 338
15.2.2 Antibody techniques......Page 339
15.2.3 DNA techniques......Page 341
15.3 Meat content and adulteration......Page 342
15.4 References......Page 343
16.1 Introduction: authenticity issues for milk and dairy products......Page 348
16.2 Detection and quantification of foreign fats......Page 351
16.3 Identifying milk of different species......Page 354
16.4.2 Watering of milk......Page 358
16.4.3 Alteration of the casein/whey protein ratio......Page 359
16.4.4 Heat load......Page 360
16.4.5 Characterisation and denomination of the geographical origin......Page 361
16.5 Conclusions......Page 362
16.6 References......Page 363
17.2 Wheat......Page 369
17.2.2 Elect rophoretic and other techniques for identifying varieties byprotein composition......Page 370
17.2.4 Digital imaging to distinguish varieties......Page 371
17.3.1 Electrophoretic techniques to identify common wheat......Page 372
17.4 Rice......Page 373
17.5 References......Page 374
18.1 Introduction: quality and adulteration issues......Page 377
18.1.1 Chemical quality......Page 378
18.1.2 Quality in terms of the content of the active constituent......Page 381
18.1.3 Cleanliness quality specifications......Page 382
18.2.1 Physical methods such as microscopy......Page 383
18.2.4 Chemical constituents in the adulterant......Page 387
18.3 Essential oils......Page 388
18.3.1 Spectroscopy......Page 390
18.3.4 Isotopic mass spectroscopy......Page 391
18.3.7 Enantiomers......Page 392
18.4 Oleoresins......Page 397
18.5 Testing for sensory quality and geographical origin......Page 399
18.5.2 Looking out for a constituent(s) that can distinguish the geographical origin......Page 400
18.5.3 Use of isotopic analysis......Page 401
18.7 References......Page 402
19.1 Introduction......Page 406
19.2 Characteristics of transgenic crops......Page 408
19.2.1 Pros and cons of transgenic crops......Page 409
19.3 Labelling requirements......Page 410
19.4.1 ELISA......Page 412
19.4.2 PCR......Page 413
19.5 Future trends......Page 415
19.6 References......Page 416
20.1 Introduction: traditional and novel methods for testing wine authenticity......Page 417
20.2 Analysis of minerals and trans-resveratrol......Page 418
20.2.1 Analysis of trans-resveratrol......Page 421
20.3.1 Phenols......Page 422
20.3.2 Volatiles......Page 424
20.3.3 Amino acids......Page 426
20.4.1 NMR......Page 429
20.4.2 Fourier Transform Infra Red (FT-IR)......Page 431
20.4.3 Sensory evaluation......Page 433
20.5 Data analysis......Page 434
20.6 Conclusions......Page 441
20.7 References......Page 442
21.1 Introduction: the key objectives of traceability......Page 449
Part III: Traceability......Page 448
21.2 Traceability coding......Page 450
21.3 Components of traceability systems......Page 452
21.3.1 Use of care lines on product packaging in traceability......Page 456
21.4.2 Communications......Page 457
21.6 References......Page 461
22.1 Introduction......Page 463
22.2 Accommodating multi-functional traceability requirements......Page 466
22.2.1 Vertical and transverse inter-linking......Page 467
22.2.2 Location requirem ents......Page 469
22.3 Item-specific data capture......Page 470
22.4.1 Global Trade Item Number (GTIN)......Page 472
22.4.2 Serial Shipping Container Code (SSCC)......Page 473
22.4.4 Global Returnable Asset Identifier (GRAI)......Page 474
22.5 Data carrier technologies......Page 475
22.5.1 EAN.UCC bar code data carriers and application identifiers......Page 477
22.5.2 Radio-Frequency Identification (RFID)......Page 479
22.6 Linking item-attendant data and database information......Page 480
22.7.1 Coding and access strategy......Page 481
22.7.2 The need for a universal data appliance protocol......Page 483
22.8 Conclusions......Page 484
23.1 Introduction......Page 486
23.3 Key elements in a traceability system......Page 488
23.4 Verifying control......Page 492
23.5 Conclusions......Page 494
23.7 References and further reading......Page 495
24.1 Introduction: the fish sector......Page 497
24.2 Recent legislation in Europe and the rest of the world regarding traceability......Page 500
24.3 Traceability systems in use today......Page 501
24.4 External traceability systems: how to generate data and inform other links in the chain......Page 503
24.5 Farmed fish - the difference between conventional and organic production......Page 504
24.6 Attitudes towards traceability in the fish sector......Page 505
24.7 References......Page 506
25.1 Introduction......Page 508
25.2 Requirements for safe feed production......Page 509
25.2.1 Historical aspects......Page 511
25.3.2 Feedborne animal diseases......Page 513
25.3.3 Zoonotic feedborne diseases......Page 521
25.3.4 Animal welfare and feed......Page 525
25.4 Control systems to manage risks: GMP and HACCP......Page 526
25.4.2 HACCP system......Page 527
25.4.3 From feed safety objectives to HACCP criteria......Page 529
25.4.4 Shortcomings of the control system......Page 530
25.5 The role and requirements of traceability systems......Page 532
25.5.1 Difficulties encountered......Page 535
25.6 Future trends: hazard early warning systems......Page 537
25.7 Abbreviations......Page 539
25.8 References......Page 540
26.1 Introduction......Page 544
26.2 Approaches to identifying geographical origin......Page 545
26.2.1 Sample selection......Page 546
26.2.2 Methods investigated......Page 547
26.3.2 Major and trace elements......Page 549
26.4.1 Proteolysis......Page 552
26.4.2 Volatile compounds......Page 556
26.4.4 Microbiology......Page 557
26.5 Conclusion......Page 561
26.6 References......Page 562
27.1 Introduction......Page 565
27.2 Issues in detecting genetically modified organisms (GMOs)......Page 567
27.2.1 Improving DNA extraction......Page 569
27.2.2 Referen ce genes for species identification and quantitation......Page 570
27.3.1 Access to materials and sequence data......Page 571
27.3.3 Limits of detection (LOD) and quantitation (LOQ)......Page 572
27.3.4 Alternatives for quantitation using PCR......Page 573
27.3.5 Method validation and the analytical procedure......Page 575
27.4.1 DNA extraction......Page 576
27.4.2 Reference genes......Page 577
27.4.3 GMO-specific methods......Page 578
27.4.5 Method validation......Page 580
27.4.6 Unauthorised and unknown GMOs......Page 581
27.5 References......Page 582