Fluid Mechanics and Machinery

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Provides guidance in building of physical and mathematical models. This work presents numerical examples for each of the equations derived.

Author(s): C.P. Kothandaraman, R. Rudramoorthy
Publisher: New Age Publications (Academic)
Year: 2009

Language: English
Pages: 615
Tags: Механика;Механика жидкостей и газов;

Preface to the Second Edition
......Page 6
Preface to the First Edition
......Page 8
Contents
......Page 10
1.0 Introduction
......Page 20
1.2 Compressible and Incompressible Fluids
......Page 21
1.3 Dimensions and Units
......Page 22
1.5 Definition of Some Common Terminology
......Page 23
1.6 Vapour and Gas
......Page 24
1.7 Characteristic Equation for Gases
......Page 25
1.8 Viscosity
......Page 26
1.8.1 Newtonian and Non Newtonian Fluids
......Page 29
1.8.4 Significance of Kinematic Viscosity
......Page 30
1.8.5 Measurement of Viscosity of Fluids
......Page 31
1.9.1 Viscous Torque and Power—Rotating Shafts
......Page 32
1.9.2 Viscous Torque—Disk Rotating Over a Parallel Plate
......Page 33
1.9.3 Viscous Torque—Cone in a Conical Support
......Page 35
1.10.1 Surface Tension Effect on Solid-Liquid Interface
......Page 36
1.10.2 Capillary Rise or Depression
......Page 37
1.10.3 Pressure Difference Caused by Surface Tension on a Doubly Curved Surface
......Page 38
1.10.4 Pressure Inside a Droplet and a Free Jet
......Page 39
1.11 Compressibility and Bulk Modulus
......Page 40
1.11.1 Expressions for the Compressibility of Gases
......Page 41
1.12.1 Partial Pressure
......Page 42
Solved Problems
......Page 43
Objective Questions
......Page 52
Review Questions
......Page 57
Exercise Problems
......Page 58
2.1 Pressure
......Page 61
2.2 Pressure Measurement
......Page 62
2.3 Pascal's Law
......Page 64
2.4 Pressure Variation in Static Fluid (Hydrostatic Law)
......Page 65
2.4.1 Pressure Variation in Fluid with Constant Density
......Page 66
2.4.2 Pressure Variation in Fluid with Varying Density
......Page 67
2.5 Manometers
......Page 68
2.5.1 Micromanometer
......Page 70
2.6 Distribution of Pressure in Static Fluids Subjected to Acceleration
......Page 72
2.6.1 Free Surface of Accelerating Fluid
......Page 73
2.6.2 Pressure Distribution in Accelerating Fluids along Horizontal Direction
......Page 74
2.7 Forced Vortex
......Page 77
Solved Problems
......Page 79
Objective Questions
......Page 90
Exercise Problems
......Page 93
3.0 Introduction
......Page 99
3.1 Centroid and Moment of Inertia of Areas
......Page 100
3.2 Force on an Arbitrarily Shaped Plate Immersed in a Liquid
......Page 102
3.3 Centre of Pressure for an Immersed Inclined Plane
......Page 103
3.3.1 Centre of Pressure for Immersed Vertical Planes
......Page 105
3.4 Component of Forces on Immersed Inclined Rectangles
......Page 106
3.5 Forces on Curved Surfaces
......Page 108
3.6 Hydrostatic Forces in Layered Fluids
......Page 111
Solved Problems
......Page 112
Review Questions
......Page 130
Objective Questions
......Page 131
Exercise Problems
......Page 134
4.1 Buoyancy Force
......Page 138
4.2 Stability of Submerged and Floating Bodies
......Page 140
4.3 Conditions for the Stability of Floating Bodies
......Page 142
4.4 Metacentric Height
......Page 143
Solved Problems
......Page 144
Review Questions
......Page 155
Objective Questions
......Page 156
Exercise Problems
......Page 158
5.0 Introduction
......Page 161
5.3 Flow of Ideal / Inviscid and Real Fluids
......Page 162
5.6 Laminar and Turbulent Flow......Page 163
5.8 Velocity and Acceleration Components......Page 164
5.9 Continuity Equation for Flow-Cartesian Co-Ordinates......Page 165
5.11 Concepts of Circulation and Vorticity......Page 167
5.12 Stream Lines, Stream Tube, Path Lines, Streak Lines and Time Lines......Page 168
5.13 Concept of Stream Line......Page 169
5.14 Concept of Stream Function......Page 170
5.15 Potential Function......Page 172
5.17.1 Source Flow......Page 173
5.17.3 Irrotational Vortex of Strength K......Page 174
5.17.4 Doublet of Strength A......Page 175
5.18.2 Source and Sink of Equal Strength with Separation of 2a Along x-Axis
......Page 176
5.18.7 Source and Vortex (Spiral Vortex Counterclockwise)......Page 177
5.19 Concept of Flow Net......Page 178
Solved Problems......Page 179
Objective Questions......Page 192
Exercise Broblems......Page 197
6.1 Forms of Energy Encountered in Fluid Flow......Page 199
6.1.2 Potential Energy......Page 200
6.1.4 Internal Energy......Page 201
6.3 Euler's Equation of Motion For Flow Along A Stream Line......Page 202
6.4 Bernoulli Equation for Fluid Flow......Page 203
6.5 Energy Line and Hydraulic Gradient Line......Page 206
6.6 Volume Flow Through A Venturimeter......Page 207
6.7 Euler and Bernoulli Equation for Flow With Friction......Page 209
6.8 Concept and Measurement of Dynamic, Static and Total Head......Page 211
6.8.1 Pitot Tube......Page 212
Solved Problems......Page 213
Objective Questions......Page 232
Exercise Problems......Page 234
7.0 Parameters Involved in the Study of Flow Through Closed Conduits......Page 238
7.2 Boundary Layer Development Over A Flat Plate......Page 239
7.3 Development of Boundary Layer in Closed Conduits (Pipes)......Page 240
7.4 Features of Laminar and Turbulent Flows
......Page 241
7.6 Concept of "Hydraulic Diameter": (Dh)
......Page 242
7.7 Velocity Variation With Radius for Fully Developed Laminar Flow in Pipes......Page 243
7.8 Darcy-Weisbach Equation for Calculating Pressure Drop......Page 245
7.9 Hagen-Poiseuille Equation for Friction Drop......Page 247
7.10 Significance of Reynolds Number in Pipe Flow......Page 248
7.11 Velocity Distribition and Friction Factor for Turbulent Flow in Pipes......Page 249
7.12 Minor Losses in Pipe Flow......Page 250
7.13 Expression for the Loss of Head at Sudden Expansion in Pipe Flow......Page 251
7.15 Energy Line and Hydraulic Grade Line in Conduit Flow......Page 253
7.17 Concept of Equivalent Pipe or Equivalent Length......Page 254
7.18.1 Condition for Maximum Power Transmission......Page 257
7.19 Network of Pipes......Page 258
7.19.1 Pipes in Series-Electrical Analogy......Page 259
7.19.2 Pipes in Parallel......Page 260
7.19.3 Branching Pipes......Page 262
Solved Problems......Page 264
Objective Questions......Page 275
Exercise Problems
......Page 278
8.0 Introduction......Page 282
8.1 Methods of Determination of Dimensionless Groups......Page 283
8.3.1 Determination of π Groups......Page 284
8.5 Correlation of Experimental Data......Page 289
8.5.2 Problems with Two Pi Terms
......Page 290
Solved Problems......Page 292
Obejective Questions......Page 310
Exercise Problems
......Page 312
9.1 Model and Prototype......Page 315
9.2.2 Dynamic Similarity......Page 316
9.3.1 Flow through Closed Conduits
......Page 317
9.3.2 Flow Around Immersed Bodies......Page 318
9.3.3 Flow with Free Surface......Page 319
9.3.4 Models for Turbomachinery......Page 320
9.4 Nondimensionalising Governing Defferential Equations......Page 321
Solved Problems......Page 322
Objective Questions......Page 334
Exercise Problems......Page 336
10.1 Boundary Layer Thickness......Page 340
10.1.2 Continuity Equation......Page 341
10.1.3 Momentum Equation......Page 343
10.1.4 Solution for Velocity Profile......Page 344
10.1.5 Integral Method......Page 346
10.1.6 Displacement Thickness......Page 349
10.1.7 Momentum Thickness......Page 350
10.2 Turbulent Flow......Page 351
10.3.1 Flow Around Immersed Bodies – Drag and Lift......Page 353
10.3.2 Drag Force and Coefficient of Drag......Page 354
10.3.3 Pressure Drag......Page 355
10.3.4 Flow Over Spheres and Cylinders......Page 356
10.3.5 Lift and Coefficient of Lift......Page 357
10.3.6 Rotating Sphere and Cylinder......Page 358
Solved Problems......Page 360
Objective Questions......Page 372
Exercise Problems......Page 375
11.2 Velocity Measurements......Page 378
11.2.1 Pitot Tube......Page 379
11.2.3 Hot Wire Anemometer......Page 381
11.2.4 Laser Doppler Anemometer......Page 382
11.3.2 Turbine Type Flowmeter......Page 383
11.3.3 Venturi, Nozzle and Orifice Meters......Page 384
11.4.1 Discharge Measurement Using Orifices......Page 386
11.4.2 Flow Measurements in Open Channels......Page 387
Solved Problems......Page 390
Review Questions......Page 398
Objective Questions......Page 399
Exercise Problems......Page 400
12.1.1 Characteristics of Open Channels......Page 402
12.2 Uniform Flow: (Also Called Flow at Normal Depth)......Page 403
12.3 Chezy's Equation for Discharge......Page 404
12.4.1 Bazin’s Equation for Chezy’s Constant......Page 405
12.4.2 Kutter’s Equation for Chezy’s Constant C......Page 406
12.4.3 Manning’s Equation for C......Page 407
12.5 Economical Cross-Section for Open Channels
......Page 409
12.6.1 Velocity of Wave Propagation in Open Surface Flow......Page 414
12.6.3 Energy Equation for Steady Flow and Specific Energy......Page 416
12.6.4 Non Dimensional Representation of Specific Energy Curve......Page 419
12.7.1 Flow Over a Bump......Page 423
12.7.2 Flow Through Sluice Gate, from Stagnant Condition......Page 425
12.7.3 Flow Under a Sluice Gate in a Channel......Page 426
12.8 Flow With Gradually Varying Depth......Page 428
12.8.1 Classification of Surface Variations......Page 429
12.9 The Hydraulic Jump (Rapidly Varied Flow)......Page 430
12.10 Flow Over Broad Crested Weir......Page 433
12.11 Effect of Lateral Contraction......Page 434
Solved Problems......Page 435
Objective Questions......Page 449
Exercise Problems......Page 451
13.1 Impulse Momentum Principle......Page 454
13.1.1 Forces Exerted on Pressure Conduits......Page 455
13.1.2 Force Exerted on a Stationary Vane or Blade......Page 457
13.3 Force on a Moving Vane or Blade......Page 458
13.4 Torque on Rotating Wheel......Page 462
Solved Problems......Page 464
Exercise Questions......Page 469
14.1 Hydraulic Power Plant......Page 471
14.3 Similitude and Model Testing......Page 472
14.3.1 Model and Prototype......Page 476
14.3.2 Unit Quantities......Page 478
14.4 Turbine Efficiencies
......Page 479
14.5 Euler Turbine Equation......Page 480
14.5.1 Components of Power Produced......Page 481
14.6 Pelton Turbine......Page 483
14.6.1 Power Development......Page 485
14.6.2 Torque and Power and Efficiency Variation with Speed Ratio......Page 489
14.7 Reaction Turbines......Page 491
14.7.1 Francis Turbines......Page 492
14.8 Axial Flow Turbines......Page 499
14.9 Cavitation in Hydraulic Machines......Page 501
14.9 Governing of Hydraulic Turbines......Page 503
Worked Examples......Page 505
Review Questions......Page 532
Objective Questions......Page 533
Exercise Problems......Page 534
15.1 Centrifugal Pumps......Page 538
15.1.2 Classification......Page 540
15.2 Pressure Developed By the Impeller......Page 541
15.3 Energy Transfer by Impeller......Page 542
15.3.3 Losses in Centrifugal Pumps......Page 544
15.3.4 Effect of Outlet Blade Angle......Page 545
15.4 Pump Characteristics......Page 546
15.5 Operation of Pumps in Series and Parallel......Page 548
15.6 Specific Speed and Significance......Page 550
15.7 Cavitation......Page 551
15.8 Axial Flow Pump......Page 552
15.9.1 Fluid Coupling......Page 554
15.9.2 Torque Converter......Page 555
Solved Examples......Page 557
Objective Questions......Page 575
Exercise Problems......Page 576
16.2 Description and Working......Page 579
16.3 Flow Rate and Power......Page 581
16.3.1 Slip......Page 582
16.4 Indicator Diagram......Page 583
16.4.1 Acceleration Head......Page 584
16.4.2 Minimum Speed of Rotation of Crank......Page 588
16.4.3 Friction Head......Page 589
16.5 Air Vessels......Page 591
16.5.1 Flow into and out of Air vessel......Page 594
16.6 Rotary Positive Displacement Pumps......Page 595
16.6.3 Vane Pump......Page 596
Solved Problems......Page 597
Exercise Problems......Page 606
Appendix......Page 609
Index
......Page 614