"Fluid Machinery and Fluid Mechanics: 4th International Symposium (4th ISFMFE)" is the proceedings of 4th International Symposium on Fluid Machinery and Fluid Engineering, held in Beijing November 24-27, 2008. It contains 69 highly informative technical papers presented at the Mei Lecture session and the technical sessions of the symposium. The Chinese Society of Engineering Thermophysics (CSET) organized the First, the Second and the Third International Symposium on Fluid Machinery and Fluid Engineering (1996, 2000 and 2004). The purpose of the 4th Symposium is to provide a common forum for exchange of scientific and technical information worldwide on fluid machinery and fluid engineering for scientists and engineers. The main subject of this symposium is "Fluid Machinery for Energy Conservation". The "Mei Lecture" reports on the most recent developments of fluid machinery in commemoration of the late professor Mei Zuyan. The book is intended for researchers and engineers in fluid machinery and fluid engineering. Jianzhong Xu is a professor at the Chinese Society of Engineering Thermophysics, Chinese Academy of Sciences, Beijing.
Author(s): Jianzhong Xu, Yulin Wu, Yangjun Zhang, Junyue Zhang
Edition: 1
Publisher: Springer
Year: 2009
Language: English
Pages: 447
Tags: Механика;Механика жидкостей и газов;Научные статьи и сборники
Cover......Page 1
Fluid Machinery and Fluid Mechanics: 4th International Symposium (4th ISFMFE)......Page 4
3540897488......Page 5
FOREWORD......Page 7
CONTENTS......Page 9
001. Heat Transfer in an Automotive Turbocharger Under Constant Load Points: an Experimental and Computational Investigation......Page 13
2 Experimental Investigation......Page 14
3 Test Results......Page 15
4 One-Dimensional Model......Page 17
5 Model Results And Validation......Page 18
References......Page 19
2 Multi-scale Thermal Design......Page 20
3 Macro-Scale Cooling Technology......Page 21
4 Micro/Nano-SCAle MeAsurement Schemes......Page 22
5 Multi-SCAle Thermal analysis......Page 23
6 Multi-scale Optimal Thermal Design......Page 24
References......Page 25
1 Introduction......Page 26
2 Centrifugal Pump Design......Page 27
3 Results And Discussion......Page 28
4 Cfd Analysis......Page 29
References......Page 30
1 Introduction......Page 32
2 Experimental Set Up......Page 33
Geometry and meshing......Page 35
Overall characteristics......Page 36
References......Page 37
1 Introduction......Page 39
2 Lattice Boltzmann Method......Page 40
3.2 Boundary Condition With Known Velocity......Page 41
5 Simulation Results......Page 42
6 Conculuding Remarks......Page 43
References......Page 44
1 Introduction......Page 45
2.2 Boundary Vorticity Flux......Page 46
2.3 Boundary Layer Separation and BVF Peaks......Page 47
3.1 General Theory......Page 48
3.2 Steady Aerodynamics: Vortex-Force Theory......Page 49
3.3 Unsteady Aerodynamics: Vorticity Moment Theory......Page 50
4.1 BVF as Marker of Strong On-Wall Local Events......Page 51
4.2 Airfoil Flow Diagnosis and Optimal Design......Page 52
5 Concluding Remarks......Page 53
References......Page 54
1 Introduction......Page 56
2 Analytical model......Page 57
3.1 Diffuser Effect of the Draft Tube......Page 59
3.3 Energy Balance......Page 60
4.1 The Case with Infinite SoundVelocity in Penstock......Page 61
4.2 The Case with Finite Sound Velocity in Penstock......Page 63
5 Conclusion......Page 67
References......Page 68
2 Importance of CO2-Emissions......Page 69
3 CO2-Reducing Measures......Page 71
Gas Turbine Technology......Page 72
Steam Turbine Technology......Page 74
Acknowledgements......Page 76
References......Page 77
066. Numerical Analysis of Impeller-Volute Tongue Interaction and Unsteady Fluid Flow in a Centrifugal Pump......Page 78
1.1 Numerical techniques......Page 79
1.2 Results and discussions......Page 80
1.4 Impeller / volute tongue interaction......Page 81
References......Page 83
1 Introduction......Page 84
2.1 Engine Test Bench......Page 85
3 Research on Compressor Unsteadiness......Page 86
4 Research on Turbine Unsteadiness......Page 89
References......Page 91
1 Introduction......Page 92
Test facility......Page 93
Cavitation and thermal effects on hydrofoils......Page 95
Visual characterization of cavitating flows......Page 96
Rotordynamic analytical models of cavitating inducers......Page 97
Reduced order model of inducer flow and performance......Page 98
References......Page 99
1 Introduction......Page 101
2 Swirling Flow Apparatus......Page 102
3 Swirling Flow Design and Analysis......Page 103
4 Vortex Breakdown Mitigation......Page 105
References......Page 107
097. Hydraulic Oscillations Caused by the Earthquake......Page 109
2 Case studies......Page 110
4 The Tools for Hydraulic Analysis......Page 111
5 CASE I: The Bottom Outlet Of An Existing Dam......Page 112
6 CASEII: Low-Head Hydropower Plant......Page 114
7 Conclusions......Page 116
References......Page 117
107. A Numerical Investigation of the Effect of End-Wall Boundary Layer Skew on the Aerodynamic Performance of a Low Aspect Ratio, High Turning Compressor Cascade......Page 119
3 Inlet boundary layer profiles......Page 120
5.1 Limiting Streamlines on End-Walls and Blades......Page 122
5.3 Pitchwise Averaged Results......Page 123
5.4 Pitch-and Spanwise Averaged Results......Page 124
References......Page 125
115. Design and Analysis of a Radial Turbine with Back Swept Blading......Page 127
2 One-Dimensional Performance......Page 128
3 Numerical Model Validation......Page 129
4.1 CFD Results......Page 130
5 FEA Results......Page 131
6 Conclusions......Page 132
References......Page 133
1 Introduction......Page 134
2 Experimental apparatus......Page 135
3 Mathematical model......Page 136
5 Results and discussion......Page 137
References......Page 140
1 Introduction......Page 142
2.1 MOGA......Page 143
2.2 NURBS blades profile parameterizationand Objective function evaluation......Page 144
3 Optimization design application......Page 145
References......Page 148
137. Axisymmetric Weakly Compressible Transient Pipe Flow and Water Hammer Control......Page 149
1 Introduction......Page 150
2.2 Assumptions and Nondimensionalization......Page 151
3.1 Perturbation Expansion......Page 152
3.2 Leading-Order Solutions......Page 153
4 Numerical Validations......Page 154
5 Water hammer control Strategies......Page 155
References......Page 156
1 Introduction......Page 157
2 Impeller Parameterization method......Page 158
4 Artificial Neural Networks......Page 159
5.1 3-D blade......Page 160
5.2 Meridional Contour......Page 161
References......Page 163
1 Introduction......Page 165
2 LDV and PIV Measurement Comparisons......Page 166
3 Diffuser Flow Studies with Rotor Stator Interactions......Page 169
Acknowledgements......Page 170
References......Page 172
2 Experimental Apparatus......Page 173
3.1 Flow behavior at design flow rate of Q=70 l/s......Page 175
3.2 Flow behavior at partial flow rate of Q= 28 l/s......Page 176
References......Page 178
2.1 Wind-tunnel for atmospheric condition......Page 179
3.2 Velocity......Page 180
4.1 H2 = 1B......Page 181
4.3 H2 = 3B......Page 182
4.6 Occurrence of vortex side by building......Page 183
References......Page 184
1 Introduction......Page 185
3 Experiment Techniques......Page 186
5.1 Inlet flow velocity......Page 187
5.3 Inlet flow directions......Page 188
5.4 Winglets in two directions......Page 189
References......Page 190
1 Introduction......Page 191
2.4 PIV setup......Page 192
3.2 Sheet cavitation (σ=1.4)......Page 193
3.3 Cloud cavitation (σ=1.02)......Page 194
4 Conclusions......Page 195
References......Page 196
185. Microchannel Heat Sinking: Analysis and Optimization......Page 197
1 Introduction......Page 198
3 Numerical Methods......Page 199
5 Results and Discussion......Page 200
References......Page 201
1 Introduction......Page 203
3 Lattice Boltzmann Equation for Reacting Flow......Page 204
6 Conclusions......Page 205
References......Page 206
1 Introduction......Page 207
2 Lattice Boltzmann Equation with Multiple Relaxation Times......Page 208
3.2 Relaxation time in LBE......Page 209
4.1 Planar couette flow......Page 210
4.2 Force-driven poiseuille flow......Page 211
References......Page 212
2 Theoritical and Numerical Disscusion......Page 213
3 Theoritieal Dissension......Page 215
4 Conculusion......Page 216
References......Page 217
1 Introduction......Page 218
2 DES-SA Model......Page 219
3.1 Fully developed plane channel flow......Page 220
3.2 Turbulent flow around a NACA0012 airfoil......Page 221
3.3 Turbulent flow in a centrifugal pump......Page 223
4 Discussions and Conclusion......Page 224
References......Page 225
1 Introduction......Page 227
2 Numerical Method......Page 228
3.4 SST k-ω model (Menter 1994)......Page 229
4 Results and Analysis......Page 230
References......Page 232
1 Introduction......Page 233
3.3 Boundary conditions......Page 234
4.1 Flow pattern analysis for steady-state calculation......Page 235
4.2 Unsteady flow behaviors......Page 236
References......Page 238
1 Introduction......Page 239
2.1 Turbo charging and heat recovery......Page 240
2.2 Integrated energy system methodology......Page 241
3.1 Mathematical model......Page 242
4.1 Mathematical model......Page 243
4.2 Model validation......Page 244
References......Page 245
1 Sealing Structure......Page 246
4 Analysis of Differences Between Computation and Test......Page 247
References......Page 249
1 The Status Quo of the Pre-Tightening About Nut on the Shaft of Turbocharger......Page 250
2.1 Analysis of the formation mechanism on pre-tightening force......Page 251
2.3 Parameters......Page 252
References......Page 253
2 Prestressed Modal Analysis......Page 254
2.2 Results and analysis......Page 256
References......Page 257
2 Connecting Structure of the Ti-AI Turbine......Page 258
3 Stress Simulation of Connecting Part......Page 259
References......Page 260
1 Introduction......Page 261
3.1 Test jet fan and measurement system......Page 262
4.1 Experimental performance......Page 263
4.3 Numericalsimulation for consideration......Page 265
References......Page 266
255. Flow Characteristics in aCross-Flow Fan with Various Design Parameters......Page 267
262. Determination of an Optimum Orbiting Radius for an Oil-Less Scroll Air Compressor......Page 274
2.2 Scroll wrap configuration factors......Page 275
3.1 Volume diagram......Page 276
3.2 Pressure and gas force......Page 277
3.4 Calculation Results......Page 278
References......Page 279
1 Introduction......Page 280
2 System Models......Page 281
4.1 Frequency features oflinear compressor without load......Page 282
4.2 The effect of spring stiffness......Page 283
Reference......Page 284
273. Two-Zone Modeling Prediction Method of Centrifugal Compressor Performance......Page 285
2 Outline of Two-Zone Modeling Method......Page 286
3 Validation Study of Two-Zone Modeling......Page 288
References......Page 290
1 Introduction......Page 291
3 Numerical Method......Page 292
4.1 Pressure and efficiency of the fans......Page 293
4.2 Aeroacoustic performance......Page 294
5 Conclusions......Page 295
References......Page 296
1 Introduction......Page 297
2.3 Crossover and mutation......Page 298
4.1 Optimized impeller......Page 299
4.4 Hemolysis......Page 300
4.5 Blood damage......Page 301
References......Page 302
1 Introduction......Page 303
2.3.1 LDV test stand......Page 304
3 Results......Page 305
References......Page 308
2 Technical Analysis......Page 309
3.1 Structure design of prototype......Page 310
5 Conclusions......Page 311
References......Page 312
1 Introduction......Page 313
3.2 Boundary conditions......Page 314
5 Results and Discussion......Page 315
Acknowledgements......Page 316
References......Page 317
1 Introduction......Page 318
3 Bearing Model......Page 319
References......Page 320
1 Introduction......Page 322
2 Model Description and Numerical Method......Page 323
3 Effect of Tongue Profile VARIATION on Pump Performance......Page 324
4 Effect of Tongue Profile Variation on pump flow field......Page 325
References......Page 326
1 Introduction......Page 328
2 Experimental Apparatus and Test Thrbine......Page 329
4 Performance by the Variation of Wave Height......Page 330
6 Performance by the Configuration of Attached Devices at the Turbine Front and Rear Entrance......Page 331
7 Visualization oflnternal Flow in the Nozzle Passages......Page 332
References......Page 333
1 Introduction......Page 334
3 Configuration of Nozzleand Runner......Page 335
6 Output Power Analysis......Page 336
7 Velocity Vectors and Distributions......Page 337
8 Pressure Contours in the Flow Passage and Pressure Distributons on the Runner Blade......Page 338
References......Page 339
1 Introduction......Page 340
2 Mathematics of Large-Eddy Simulation......Page 341
3.2 Dynamic Model......Page 342
4 Results and Discussion......Page 343
5 Conclusions......Page 345
References......Page 346
1 Introduction......Page 347
3 Test Kaplan Turbine and Parameters......Page 348
4 Prediction of Performances for Kaplan Turbine......Page 349
5 Simulation of the Flow in Kaplan Thrbine......Page 351
References......Page 352
3 Coputational Condition......Page 353
4.2 Amplitude and frequency of pressure fluctuation at inlet of draft tube......Page 354
References......Page 356
1 Introduction......Page 357
3 Geometry Physical Model of Turbine Flowing Parts......Page 358
4.4 Boundary Conditions......Page 359
4.5 Numerical Calculation Results......Page 360
5 Results Analysis and Conclusions......Page 361
References......Page 362
1 Introduction......Page 364
3.1 Geometry Generation......Page 365
3.2 Boundary & Initial Conditions......Page 366
4 Results & Discussions......Page 367
References......Page 368
357. Recent Development of Lagrangian Vortex Method and Its Application into Fluid Machinery and Fluid Engineering......Page 369
2 Algorithm of Lagrangian Vortex Method......Page 370
3 Application Example for Simulation of a Mixed Flow Pump Operation......Page 371
4 Application Example for a Coupled Structure and Fluid Analysis......Page 372
References......Page 374
2 Theory Base of the Simulation System......Page 375
4 Run of the Simulation System and the Analysis of the Calculate Result......Page 376
References......Page 377
1 Introduction......Page 378
2 The Model of Oil Film Bearing......Page 379
4 Calculation of the Centrifugal Pump Rptor Dynamic Characteristics......Page 381
Project Support......Page 382
1 Introduction......Page 383
2 Governing Equations of Cavitating Two-Phase Flow in Two-Fluid Model......Page 384
3.2 Boundary Conditions......Page 385
4.1 Velocity Magnitude Distribution......Page 386
4.2 Streamline and Velocity Vector......Page 387
References......Page 388
1 Introduction......Page 389
2 Test......Page 390
3 Test results......Page 391
4.2 Numerical Analysis......Page 393
References......Page 394
1 Introduction......Page 395
2 Porous Medium Model......Page 396
3 Computational Model......Page 397
4.1 Flow Fields in the Labyrinth Seal......Page 398
4.2 Flow Field in the Brush Seal......Page 399
References......Page 400
1 Introduction......Page 401
2 Numerical Analysis......Page 402
3 Theoritieal Dissension......Page 403
References......Page 405
1 Introduction......Page 406
4 The Results and Analysis......Page 407
5 Comparative Analysis......Page 408
6 Conclusions......Page 409
References......Page 410
2 Conventional FEA Method......Page 411
5 Coupled Approach......Page 412
Coupling Example......Page 413
6 Concluding Remarks......Page 414
References......Page 415
1 Introduction......Page 417
2 Numerical Analysis......Page 418
3 Optimization Technique......Page 419
4 Results and Discussion......Page 420
References......Page 421
1 Introduction......Page 423
3 The Model of Numerical Simulation......Page 424
5 Conclusion......Page 425
References......Page 426
1 Introduction......Page 427
2 Structure and Material......Page 428
4 Impact in Normal Position......Page 429
6 Unloader Material......Page 431
References......Page 432
2 Computational Results of Rotor-Bearing System......Page 433
2.1 Influence of Span on Stability......Page 434
2.3 Influences of Gaps on Stability......Page 435
3 Conclusions......Page 436
References......Page 437
1 Introduction......Page 438
2 Analysis on Theory......Page 439
4.1 Governing Equation......Page 440
4.4 Meshedmodel and Boundary Condition......Page 441
5.1 Numerical Simulation Results......Page 442
5.3 Comparison Between CFD and Experiment Research......Page 443
References......Page 444
Author Index......Page 446