Fluid Flow for Chemical and Process Engineers

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This major new edition of a popular undergraduate text covers topics of interest to chemical engineers taking courses on fluid flow. These topics include non-Newtonian flow, gas-liquid two-phase flow, pumping and mixing. It expands on the explanations of principles given in the first edition and is more self-contained. Two strong features of the first edition were the extensive derivation of equations and worked examples to illustrate calculation procedures. These have been retained. A new extended introductory chapter has been provided to give the student a thorough basis to understand the methods covered in subsequent chapters.

Author(s): F. Holland, R. Bragg
Edition: 2
Publisher: Butterworth-Heinemann
Year: 1995

Language: English
Pages: 375
Tags: Механика;Механика жидкостей и газов;Гидрогазодинамика;

Front Cover......Page 1
Fluid Flow for Chemical Engineers......Page 4
Copyright Page......Page 5
Contents......Page 6
List of examples......Page 10
Preface to the second edition......Page 12
Nomenclature......Page 13
1.2 Description of fluids and fluid flow......Page 18
1.3 Types of flow......Page 21
1.4 Conservation of mass......Page 24
1.5 Energy relationships and the Bernoulli equation......Page 26
1.6 Momentum of a flowing fluid......Page 34
1.7 Stress in fluids......Page 44
1.8 Sign conventions for stress......Page 53
1.9 Stress components......Page 60
1.10 Volumetric flow rate and average velocity in a pipe......Page 62
1.11 Momentum transfer in laminar flow......Page 63
1.12 Non-Newtonian behaviour......Page 65
1.13 Turbulence and boundary layers......Page 72
2.1 Reynolds number and flow patterns in pipes and tubes......Page 87
2.3 Friction factor and pressure drop......Page 88
2.4 Pressure drop in fittings and curved pipes......Page 97
2.5 Equivalent diameter for non-circular pipes......Page 101
2.6 Velocity profile for laminar Newtonian flow in a pipe......Page 102
2.8 Velocity distribution for turbulent flow in a pipe......Page 103
2.9 Universal velocity distribution for turbulent flow in a pipe......Page 106
2.10 Flow in open channels......Page 111
3.1 Elementary viscometry......Page 113
3.2 Rabinowitsch–Mooney equation......Page 119
3.3 Calculation of flow rate-pressure drop relationship for laminar flow using t-y data......Page 125
3.4 Wall shear stress–flow characteristic curves and scale-up for laminar flow......Page 127
3.5 Generalized Reynolds number for flow in pipes......Page 131
3.6 Turbulent flow of inelastic non-Newtonian fluids in pipes......Page 132
3.7 Power law fluids......Page 135
3.8 Pressure drop for Bingham plastics in laminar flow......Page 140
3.9 Laminar flow of concentrated suspensions and apparent slip at the pipe wall......Page 142
3.10 Viscoelasticity......Page 148
4.2 System heads......Page 157
4.3 Centrifugal pumps......Page 160
4.4 Centrifugal pump relations......Page 169
4.5 Centrifugal pumps in series and in parallel......Page 173
4.6 Positive displacement pumps......Page 176
4.7 Pumping efficiencies......Page 177
4.8 Factors in pump selection......Page 179
5.1 Mixers and mixing......Page 181
5.2 Small blade high speed agitators......Page 182
5.3 Large blade low speed agitators......Page 187
5.4 Dimensionless groups for mixing......Page 190
5.5 Power curves......Page 191
5.6 Scale-up of liquid mixing systems......Page 198
5.7 The purging of stirred tank systems......Page 202
6.1 Energy relationships......Page 206
6.2 Equations of state......Page 210
6.3 Isothermal flow of an ideal gas in a horizontal pipe......Page 212
6.4 Non-isothermal flow of an ideal gas in a horizontal pipe......Page 216
6.5 Adiabatic flow of an ideal gas in a horizontal pipe......Page 217
6.6 Speed of sound in a fluid......Page 219
6.7 Maximum flow rate in a pipe of constant cross-sectional area......Page 220
6.8 Adiabatic stagnation temperature for an ideal gas......Page 222
6.9 Gas compression and compressors......Page 223
6.10 Compressible flow through nozzles and constrictions......Page 226
7.1 Flow patterns and flow regime maps......Page 236
7.2 Momentum equation for two-phase flow......Page 241
7.3 Flow in bubble columns......Page 244
7.4 Slug flow in vertical tubes......Page 252
7.5 The homogeneous model for two-phase flow......Page 256
7.6 Two-phase multiplier......Page 266
7.7 Separated flow models......Page 268
8.1 Flowmeters and flow measurement......Page 285
8.2 Head flowmeters in closed conduits......Page 287
8.3 Head flowmeters in open conduits......Page 295
8.4 Mechanical and electromagnetic flowmeters......Page 299
8.5 Scale errors in flow measurement......Page 301
9.1 Relative motion between a fluid and a single particle......Page 305
9.2 Relative motion between a fluid and a concentration particles......Page 309
9.3 Fluid flow through packed beds......Page 311
9.4 Fluidization......Page 315
9.5 Slurry transport......Page 317
9.6 Filtration......Page 320
10.1 Quasi-steady flow......Page 322
10.2 Incremental calculation: time to discharge an ideal gas from a tank......Page 325
10.3 Time for a solid spherical particle to reach 99 per cent its terminal velocity when falling from rest in the Stokes regime......Page 328
10.4 Suddenly accelerated plate in a Newtonian fluid......Page 329
10.5 Pressure surge in pipelines......Page 334
Appendix I. The Navier–Stokes equations......Page 339
Appendix II. Further problems......Page 349
Answers to problems......Page 362
Conversion factors......Page 365
Friction factor charts......Page 366
Index......Page 368