Flow Through a Throttle Body. A Comparative Study of Heat Transfer, Wall Surface Roughness and Discharge Coefficient

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Linköping, 2007. 68 p.
Abstract
When designing a new fuel management system for a spark ignition engine the amount of air that is fed to the cylinders is highly important. A tool that is being used to improve the performance and reduce emission levels is engine modeling were a fuel management system can be tested and designed in a computer environment thus saving valuable setup time in an engine test cell. One important part of the modeling is the throttle which regulates the air. The current isentropic model has been investigated in this report. A throttle body and intake manifold has been simulated using Computational Fluid Dynamics (CFD) and the influence of surface heating and surface wall roughness has been calculated. A method to calculate the effective flow area has been constructed and tested by simulating at two different throttle plate angles and several pressure ratios across the throttle plate. The results show that both surface wall roughness and wall heating will reduce the mass flow rate compared to a smooth and adiabatic wall respectively. The reduction is both dependent on pressure ratio and throttle plate angle. The effective area has showed to follow the same behaviour as the mass flow rate for the larger simulated throttle plate angle 31◦, i.e. an increase as the pressure drop over the throttle plate becomes larger. At the smaller throttle plate angle 21◦, the behaviour is completely different and a reduction of the effective area can be seen for the highest pressure drop where an increase is expected.

Author(s): Carlsson P.

Language: English
Commentary: 415482
Tags: Транспорт;Двигатели внутреннего сгорания (ДВС)