First and Second Law Analyses of a Naturally-Aspirated, Miller Cycle, SI Engine with Late Intake Valve Closure

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Society of Automotive Engineers, Inc. 1998. — 18 p.
Abstract
A naturally-aspirated, Miller cycle, Spark-Ignition (SI) engine that controls output with variable intake valve closure is compared to a conventionally-throttled engine using computer simulation. Based on First and Second Law analyses, the two load control strategies are compared in detail through one thermodynamic cycle at light load conditions and over a wide range of loads at 2000 rpm. The Miller Cycle engine can use late intake valve closure (LIVC) to control indicated output down to 35% of the maximum, but requires supplemental throttling at lighter loads. The First Law analysis shows that the Miller cycle increases indicated thermal efficiency at light loads by as much as 6.3%, primarily due to reductions in pumping and compression work while heat transfer losses are comparable. The Second Law analysis shows that the throttling process in the conventional engine destroys up to 3% of the available energy in the fuel, and that the phasing of the heat transfer losses is more costly to its work producing potential. Overall, the availability analysis recognizes that the higher pressure in the LIVC intake manifold leads to a notable thermomechanical advantage, which the throttled engine has to overcome by consuming more chemical availability to achieve the same load.

Author(s): Anderson M.K., Assanis D.N., Filipi Z.S.

Language: English
Commentary: 1571021
Tags: Транспорт;Двигатели внутреннего сгорания (ДВС)