Finite Markov Chains: With a New Appendix ''Generalization of a Fundamental Matrix''

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): John G. Kemeny, J. Laurie Snell
Series: Undergraduate Texts in Mathematics
Publisher: Springer
Year: 1976

Language: English
Pages: 244

FINITE MARKOV CHAINS......Page 1
Undergraduate Texts in Mathematics......Page 2
Title Page......Page 3
Copyright Page......Page 4
Preface......Page 5
Preface to the Second Printing......Page 7
Table of Contents......Page 9
§ 1.1 Sets.......Page 13
§ 1.2 Statements.......Page 14
§ 1.3 Order relations.......Page 15
§ 1.4 Communication relations.......Page 17
§ 1.5 Probability measures.......Page 19
§ 1.6 Conditional probability.......Page 21
§ 1.7 Functions on a possibility space.......Page 22
§ 1.8 Mean and variance of a function.......Page 24
§ 1.9 Stochastic processes.......Page 26
§ 1.10 Summability of sequences and series.......Page 30
§ 1.11 Matrices.......Page 31
§ 2.1 Definition of a Markov process and a Markov chain.......Page 36
§ 2.2 Examples.......Page 38
§ 2.3 Connection with matrix theory.......Page 44
§ 2.4 Classification of states and chains.......Page 47
§ 2.5 Problems to be studied.......Page 50
Exercises for Chapter 2......Page 51
§ 3.1 Introduction.......Page 55
§ 3.2 The fundamental matrix.......Page 57
§ 3.3 Applications of the fundamental matrix.......Page 61
§ 3.4 Examples......Page 67
§ 3.5 Extension of results.......Page 70
Exercises for Chapter 3......Page 78
§ 4.1 Basic theorems.......Page 81
§ 4.2 Law of large numbers for regular Markov chains.......Page 85
§ 4.3 The fundamental matrix for regular chains.......Page 87
§ 4.4 First passage times.......Page 90
§ 4.5 Variance of the first passage time.......Page 94
§ 4.6 Limiting covariance.......Page 96
§ 4.7 Comparison of two examples.......Page 102
§ 4.8 The general two-state case.......Page 106
Exercises for Chapter 4......Page 107
§ 5.1 Fundamental matrix.......Page 111
§ 5.2 Examples of cyclic chains.......Page 114
§ 5.3 Reverse Markov chains.......Page 117
Exercises for Chapter 5......Page 122
§ 6.1 Application of absorbing chain theory to ergodic chains.......Page 124
§ 6.2 Application of ergodic chain theory to absorbing Markov chains.......Page 129
§ 6.3 Combining states.......Page 135
§ 6.4 Weak lumpability.......Page 144
§ 6.5 Expanding a Markov chain.......Page 152
Exercises for Chapter 6......Page 157
§ 7.1 Random walks.......Page 161
§ 7.2 Applications to sports.......Page 173
§ 7.3 Ehrenfest model for diffusion.......Page 179
§ 7.4 Applications to genetics.......Page 188
§ 7.5 Learning theory.......Page 194
§ 7.6 Applications to mobility theory.......Page 203
§ 7.7 The open Leontief model.......Page 212
2—Basic Definitions......Page 219
3—Basic Quantities for Absorbing Chains......Page 220
5—Basic Quantities for Ergodic Chains......Page 221
7—Some Basic Examples......Page 222
A Class of Linear Equations......Page 223
A Special Case......Page 227
Ergodic Chains......Page 229
Applications......Page 232
Historical Notes......Page 235
References......Page 236
Undergraduate Texts in Mathematics (continued from ii)......Page 237
Back Cover......Page 238