This comprehensive new two-volume work provides the reader with a detailed insight into the use of the finite element method in geotechnical engineering. As specialist knowledge required to perform geotechnical finite element analysis is not normally part of a single engineering degree course, this lucid work will prove invaluable. It brings together essential information presented in a manner understandable to most engineers.Volume 1 presents the theory, assumptions and approximations involved in finite element analysis while Volume 2 concentrates on its practical applications.
Author(s): David, M Potts, Lidija Zdravkovic
Publisher: Thomas Telford Publishing
Year: 1999
Language: English
Pages: 449
Tags: Математика;Вычислительная математика;Метод конечных элементов;
(Reihenfolge der Seiten nicht ok, Sprung bei 37/38, 85/86, 139/140, Bookmarks sind ok)......Page 1
2. Tunnels......Page 5
3. Earth retaining structures......Page 6
5. Embankments......Page 8
6. Shallow foundations......Page 10
7. Deep foundations......Page 11
8. Benchmarking......Page 12
9. Restrictions and pitfalls......Page 14
1.2 Introduction......Page 21
1.3.1 Introduction......Page 22
1.3.2 Oedometer test......Page 23
1.3.3 Triaxial test......Page 26
1.3.4 True triaxial test......Page 31
1.3.5 Direct shear test......Page 32
1.3.6 Simple shear test......Page 34
1.3.8 Hollow cylinder test......Page 36
1 -3.10 Geophysical techniques......Page 88
1 -3.1 1 Permeameters......Page 90
1.4.2 Standard penetration test (SPT)......Page 91
1.4.3 Cone penetration test (CPT)......Page 95
1.4.4 Pressuremeter testing......Page 98
1.4.5 The plate loading test......Page 100
1.5 Summary......Page 103
2.2 Introduction......Page 106
2.3.1 Introduction......Page 107
2.3.3 Tunnel Boring Machines (TBM), including slurry shield and Earth Pressure Balance (IEPB) tunnelling......Page 108
2.3.5 Ground response to tunnel construction......Page 109
2.4.1 Introduction......Page 111
2.4.2 Setting up the initial......Page 112
2.4.4 Modelling tunnel excavation......Page 113
2.4.5 Modelling the tunnel lining......Page 116
2.5.2 Setting up the initial conditions......Page 120
2.5.3 Hydraulic boundary conditions......Page 122
2.5.4 Permeability models......Page 123
2.5.5 A parametric study of the effect of permeable and impermeable tunnel linings......Page 125
2.6.2 Results from a parametric study......Page 127
2.6.3 Devices for improving the surface settlement prediction......Page 128
2.7.1 The influence of building stiffness on tunnel-induced......Page 131
2.7.2 The Treasury building a case study......Page 134
2.7.3 Twin tunnel interaction......Page 138
2.8 Summary......Page 38
3.2 Introduction......Page 40
3.3.2 Gravity walls Gravity Counterfort......Page 41
3.3.4 Embedded walls......Page 42
3.4.2 Symmetry......Page 43
3.4.3 Geometry of the finite element model......Page 45
3.4.4 Support systems......Page 48
3.4.5.1 Structural components......Page 50
3.4.5.2 Soil......Page 51
3.4.6.2 'Green field' conditions......Page 54
3.4.6.3 Modified initial soil stresses......Page 55
3.4.7.2 Construction method......Page 57
3.4.7.3 Time related movements......Page 58
3.5.1 Introduction......Page 59
3.5.2 Earth pressure due to compaction......Page 60
3.5.3 Finite element analysis......Page 61
3.6.1 Introduction......Page 62
3.6.2 Finite element analysis......Page 65
3.7.1 Introduction......Page 69
3.7.2.2 Field measurements......Page 70
3.7.2.3 Analysis......Page 71
3.7.2.4 Comments......Page 72
3.7.3.1 Element type......Page 73
3.7.3.2 WaN stiffness......Page 75
3.7.3.4 Wall permeability......Page 77
3.7.4.2 Support stiffness......Page 78
3.7.4.3 Connection details......Page 79
3.7.4.4 Active support systems......Page 80
3.7.4.6 Ground anchors......Page 81
3.7.4.7 Relieving slabs......Page 82
3.7.5 Long term behaviour and post construction effects......Page 84
3.7.6 Adjacent structures......Page 85
3.8 Summary......Page 142
Appendix 111.1 : Stress level......Page 143
4.2 introduction......Page 145
4.3.1 Introduction......Page 146
4.3.2.3 Finite element analyses......Page 147
4.3.2.4 Results of analyses......Page 148
4.3.3.1 Introduction......Page 151
4.3.3.2 Soil parameters......Page 152
4.3.3.3 Finite element analyses......Page 156
4.3.3.4 Results of analyses......Page 158
4.4 Progressive failure......Page 161
4.5.1 Introduction......Page 165
4.5.2 Choice of constitutive model......Page 166
4.5.4. 1 Introduction......Page 167
4.5.4.2 Soil parameters......Page 168
4.5.4.4 Results of a typical analysis......Page 170
4.5.4.5 Effect of coefficient of earth pressure at rest......Page 173
4.5.4.7 Effect of slope geometry......Page 175
4.5.4.8 Effect of surface cracking......Page 176
4.5.4.9 Effect of subsequent changes to slope geometry......Page 178
4.5.4.10 Further discussion......Page 180
4.6 Construction of cut slopes under water......Page 182
4,7 Summary......Page 183
5.2 Introduction......Page 186
5.3.2 Typical stress paths......Page 187
5.3.3 Choice of constitutive models......Page 188
5.3.3.2 'PO wer la W' models......Page 189
5.3.3.3 Hyperbolic model......Page 190
5.3.3.5 Elasto-plastic models......Page 191
5.3.4 Layered analysis, stiffness of the simulated layer and......Page 193
5.3.5.2 Material parameters......Page 195
5.3.5.3 Finite er'emen t analyses......Page 197
5,3.5.4 Comparison with observations......Page 199
5.3.6.1 in troduc tion......Page 200
5.3.6.2 Dale Dyke dam......Page 201
5.3.6.3 Ramsden dam......Page 203
5.4.1 Introduction......Page 205
5.4.3.1 Introduction......Page 206
5.4.3.2 Material properties......Page 207
5.4.3.3 Finite element analyses......Page 208
5.4.4. 1 In troduction......Page 209
5.4.4.2 Material parameters and soil model used......Page 210
5.4.4.4 Original Carsing ton section......Page 211
5.4.4.5 Effect of the core......Page 212
5.4.4.6 Effect of a beam in improving the stability......Page 213
5.5.1 Introduction......Page 214
5.5.2 Typical soil conditions......Page 215
5.5.3 Choice of constitutive model......Page 216
5.5.5.2 Soil conditions......Page 218
5.5.5.3 Finite element analysis......Page 219
5.5.6, 1 Introduction......Page 220
5.5.6.3 Results......Page 221
5.5.7. 1 Introduction......Page 222
5.5.7.2 Soil conditions......Page 223
5.5.7.3 Finite element analysis......Page 224
5.5.7.4 Results......Page 225
5.5.8.2 Geometry......Page 226
5.5.8.4 Finite element analyses......Page 227
5.5.8.5 Results......Page 228
5.6 Summary......Page 231
6.2 Introduction......Page 234
6.4 Choice of soil model......Page 235
6.5.1 Introduction......Page 236
6.5.3 Rigid foundations......Page 238
6.5.4.2 Strip footings on undrained clay......Page 239
6.5.4.3 Effect of footing shape on the bearing capacity of undrained clay......Page 243
6.5.4.4 Strip footings on......Page 245
6.5.4.5 Strip footings on a drained soil......Page 247
6.5.4.6 Circular footings on a weightless drained soil......Page 250
6.5.4.7 Circular footings on a drained soil......Page 252
6.5.5.1 Introduction......Page 253
6.5.5.2 Constitutive model......Page 254
6.5.5.4 Failure mechanisms......Page 256
6.5.6.1 Introduction......Page 258
6.5.6.2 Constitutive model......Page 259
6.5.6.4 Results of the analyses......Page 260
6.5.7.1 Introduction......Page 263
6.5.7.2 Soil behaviour......Page 264
6.5.7.3 Behaviour of S trip foo tings......Page 266
6.5.7.4 Behaviour of circular......Page 267
6.6.2 Effect of foundation depth on undrained bearing......Page 268
6.6.3. 1 Introduction......Page 274
6.6.3.2 Details of the Tower and ground profile......Page 275
6.6.3.3 History of construction......Page 276
6.6.3.4 History of tilting......Page 277
6.6.3.6 Stability of tall towers......Page 278
6.6.3.7 Soil properties......Page 281
6.6.3.8 Finite element analysis......Page 285
6.6.3.9 Simulation of the history of inclination......Page 287
6.6.3.10 Temporary counterweight......Page 289
6.6.3. 1 1 Observed behaviour during application of the counterweight......Page 291
6.6.3. 1 3 Soil ex traction......Page 293
6.6.3.14 The response of the Tower to soil extraction......Page 297
6.6.3.1 5 Comments......Page 298
6.7 Summary......Page 300
7.2 Introduction......Page 302
7.3.2 Vertical loading......Page 304
7.3.3 Lateral loading......Page 309
7.4.1 introduction......Page 311
7.4.3 Superposition......Page 313
7.4.3. 1 Simple superposition......Page 314
7.4.3.2 Pile displacemen ts with depth......Page 315
7.4.4 Load distribution within a pile group......Page 316
7.4.4. 1 Obtaining an initial trial division of the applied loads......Page 318
7.4.4.3 Checking the rigid pile cap criterion......Page 319
7.4.5. 1 Matrix formulation of the pile group response......Page 320
7.4.5.2 Superposition of loads......Page 321
7.4.5.3 Evaluating the solution displacements and rotations......Page 324
7.4.6.2 Soil properties and initial conditions......Page 326
7.4.6.3 Finite element analyses......Page 330
7.4.6.4 Design of Magmus foundations......Page 331
7.4.6.5 Environmental loading......Page 336
7.5.1 Introduction......Page 339
7.5.3 Finite element analysis......Page 340
7.5.4 Modelling of the interface between top cap and soil......Page 342
7.5.5.1 Soil conditions......Page 343
7.5.5.3 Results......Page 344
7.5.6.2 Results......Page 348
7.5.7.2 Geometry......Page 349
7.6 Summary......Page 351
8.2 Definitions......Page 354
8.3 Introduction......Page 355
8.4 Causes of errors in computer calculations......Page 356
8.5 Consequences of errors......Page 357
8.6.1 Developers......Page 358
8.6.2 Users......Page 359
8.8.1 General......Page 361
8.8.2 Standard benchmarks......Page 362
8.9 The INTERCLAY I! project......Page 363
8.1 0.1 General......Page 364
8.10.2 Example l : Analyses of an idealised triaxial rest......Page 365
8.10.3 Example 2: Analysis of a thick cylinder......Page 366
8.10.4 Example 3: Analyses of an advancing tunnel heading......Page 368
8.10.5 Example 4: Analysis of a shallow waste disposal......Page 370
8.1 0.6 Example 5: Simplified analysis of a shallow waste......Page 373
8.l 1.2 Example 6: Construction of a tunnel......Page 375
8.1 1.3 Example 7: Deep excavation......Page 377
8.1 1.4 General comments......Page 378
8.12 Summary......Page 379
Appendix V111.2: Specification for Example 2: Analysis ofa thick cylinder......Page 380
Appendix V111.3: Specification for Example 3: Analysis ofan advancing tunnel heading......Page 381
Appendix V111.4 Specification for Example 4: Analysis ofa shallow waste disposal......Page 382
Appendix V111.5: Specification for Example 5: Simplifiedanalysis of a shallow waste disposal......Page 383
Appendix Q111.6: Specification for Example 6:Construction of a tunnel......Page 384
9.2. introduction......Page 386
9.3 Discretisation errors......Page 387
9.4.2 Basic theory......Page 390
9.4.3 Ill-conditioning......Page 392
9.4.4 Steep stress gradients......Page 395
9.5.1 Walls......Page 398
9.5,2 Piles......Page 399
9.5.3 Ground anchors......Page 400
9.5.5 Structural connections......Page 402
9.5.6 Segmental tunnel linings......Page 403
9.6 Use of the Mohr-Coulomb model for undrained analysis......Page 404
9.7 Influence of the shape of the yield and plastic potential surfaces in the deviatoric plane......Page 406
9.8 Using critical state models in undrained analysis......Page 408
9.9 Construction problems......Page 409
9.10 Removal of prescribed degrees of freedom......Page 410
9.11 Modelling underdrainage......Page 411
9.12 Summary......Page 416
References......Page 418
List of symbols......Page 430
Index......Page 435