Finitary coalgebraic logics [PhD Thesis]

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Clemens Kupke
Series: ILLC Dissertation Series DS-2006-03
Publisher: University of Amsterdam
Year: 2006

Language: English
Pages: 197
City: Amsterdam

1 Introduction 1
1.1 Coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Finite vs. infinite words . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Formal definition . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Specifying coalgebras using modal logic . . . . . . . . . . . . . . . . 5
1.2.1 Why using modal languages? . . . . . . . . . . . . . . . . . 5
1.2.2 Coalgebraic modal logics . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Issues concerning finitary modal languages . . . . . . . . . . 7
1.3 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Stone coalgebras . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Algebraic semantics of coalgebraic modal logic . . . . . . . . 9
1.3.3 Coalgebraic logics and coalgebra automata . . . . . . . . . . 9
1.4 Origin of the presented material . . . . . . . . . . . . . . . . . . . . 9
2 Coalgebraic Modal Logics 11
2.1 Inductively defined logics . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 Kripke polynomial functors . . . . . . . . . . . . . . . . . . 11
2.1.2 The logic MSML . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Logics given by predicate liftings . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Syntax and semantics . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Derivability and the logic L(Λ, Ax) . . . . . . . . . . . . . . . 22
2.2.3 The language of all liftings . . . . . . . . . . . . . . . . . . . 24
2.3 Coalgebraic fixed-point logic . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Finitary coalgebraic logic . . . . . . . . . . . . . . . . . . . 26
2.3.2 Adding fixed-points . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3 Stone coalgebras 33
3.1 Stone duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.1 Basic Stone duality . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 Duality for modal algebras . . . . . . . . . . . . . . . . . . . 37
3.1.3 Modal logic is expressive for descriptive general frames . . . 41
3.2 From Kripke to Vietoris . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Vietoris polynomial functors . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 Linking algebraic and coalgebraic semantics . . . . . . . . . 53
3.4 Duality between BAOT and Coalg(V) . . . . . . . . . . . . . . . . . 56
3.5 Alternative view: Many-sorted algebras . . . . . . . . . . . . . . . . 63
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4 Algebraic semantics of coalgebraic modal logic 71
4.1 Definition of the algebraic semantics . . . . . . . . . . . . . . . . . . 73
4.1.1 Algebras for an algebraic theory . . . . . . . . . . . . . . . . 73
4.1.2 (Pre-)Boolean algebras . . . . . . . . . . . . . . . . . . . . . 75
4.1.3 Liftings and the functor L . . . . . . . . . . . . . . . . . . . 80
4.1.4 Equivalence of Alg(T(Λ, Ax)) and Alg(L) . . . . . . . . . . . 84
4.2 Functor sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.1 The initial sequence of L . . . . . . . . . . . . . . . . . . . . 88
4.2.2 The final sequence of T . . . . . . . . . . . . . . . . . . . . 93
4.3 Coalgebraic semantics as a natural transformation . . . . . . . . . . . 95
4.3.1 Definition of δ . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.2 A functor linking algebraic and coalgebraic semantics . . . . 97
4.3.3 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4 A characterization of duality . . . . . . . . . . . . . . . . . . . . . . 104
4.4.1 Existence of δ and injectivity . . . . . . . . . . . . . . . . . . 105
4.4.2 Surjectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5 Closure properties of coalgebra automata 113
5.1 Coalgebra automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.1.1 Deterministic graph automata . . . . . . . . . . . . . . . . . 114
5.1.2 The bisimulation game . . . . . . . . . . . . . . . . . . . . . 116
5.1.3 Coalgebra automata . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Closure properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2.1 Closure under union, intersection and projection . . . . . . . 121
5.2.2 From alternating automata to nondeterministic ones . . . . . . 125
5.2.3 Non-emptiness of coalgebra automata . . . . . . . . . . . . . 136
5.2.4 A remark about standardness . . . . . . . . . . . . . . . . . . 138
5.3 The connection with coalgebraic fixed-point logic . . . . . . . . . . . 140
5.3.1 Finite model property . . . . . . . . . . . . . . . . . . . . . . 141
5.3.2 A distributive law . . . . . . . . . . . . . . . . . . . . . . . . 142
5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A Category theory 147
A.1 Basic notions of category theory . . . . . . . . . . . . . . . . . . . . 147
A.2 Set-functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.2.1 Basic constructions . . . . . . . . . . . . . . . . . . . . . . . 148
A.2.2 Standard and weak pullback preserving functors . . . . . . . 149
A.3 Coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
B Universal Algebra 157
B.1 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
B.2 Equational Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
C Parity games 163
Bibliography 171
Index 179