Feasible Computations and Provable Complexity Properties

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

An overview of current developments in research on feasible computations; and a consideration of this area of research in relation to provable properties of complexity of computations.

The author begins by defining and discussing efficient reductions between problems and considers the families and corresponding complete languages of NL, DCSL, CSL, P, NP, PTAPE, EXPTIME, and EXPTAPE. Definitions and results are uniformly extended to computationally simpler natural families of languages such as NL, P, and CSL by using Log n-tape bounded reductions.

The problem of determining what can and cannot be formally proven about running times of algorithms is discussed and related to the problem of establishing sharp time bounds for one-tape Turing machine computations, and the inability to formally prove running times for algorithms is then related to the presence of gaps in the hierarchy of complexity classes.

The concluding discussion is on the possibility that the famous P=NP? problem is independent of the axioms of formal mathematical systems such as set theory.

Author(s): Juris Hartmanis
Series: CBMS-NSF Regional Conference Series in Applied Mathematics
Publisher: Society for Industrial Mathematics
Year: 1987

Language: English
Pages: 73