Аннотация Рассматриваются основные направления теории обыкновенных дифференциальных уравнений и практические методы решения таких уравнений. Значительная часть книги содержит стандартный учебный материал по курсу обыкновенных дифференциальных уравнений. Кроме того, рассматриваются матричные дифференциальные уравнения, основы теории устойчивости по Ляпунову, основы теории периодических решений нелинейных уравнений, теория уравнений с разрывной правой частью (дифференциальные включения) и применение теории групп Ли к решению обыкновенных дифференциальных уравнений. Для студентов университетов и технических вузов, для преподавателей и научных работников, интересующихся обыкновенными дифференциальными уравнениями и их приложениями. Другие книги по дифференциальным уравнениям на сайте: Айнс Э. Обыкновенные дифференциальные уравнения Арнольд В.И. Обыкновенные дифференциальные уравнения Две книги Н.П. Еругина по дифференциальным уравнениям Бугров Я.С., Никольский С.М. Высшая математика т.3. Дифференциальные уравнения Понтрягин Л.С. Обыкновенные дифференциальные уравнения Филиппов А.Ф. Сборник задач по дифференциальным уравнениям Босс В. Лекции по математике. Дифференциальные уравнения Александров А.Д. и др. Математика, ее содержание, методы и значение Агафонов С.А., Герман А.Д., Муратова Т.В. Дифференциальные уравнения Смирнов В.И. Курс высшей математики. В пяти томах. Тт.1,2.
Author(s): Егоров А.И.
Edition: Изд. 2-е, испр
Publisher: Физматлит
Year: 2005
Language: Russian
Pages: 384
City: М
Tags: Математика;Дифференциальные уравнения;Обыкновенные дифференциальные уравнения;