Author(s): Naumenko K., Altenbach H.
Publisher: Springer
Year: 2010
Language: German
Pages: 233
Modeling of Creep for Structural Analysis
......Page 3
Preface......Page 5
Contents......Page 9
1.1.1 Uni-Axial Creep......Page 13
1.1.2 Multi-Axial Creep and Stress State Effects......Page 19
1.2 Creep in Engineering Structures......Page 23
1.3 Basic Approaches to Creep Modeling......Page 27
2.1 General Remarks......Page 29
2.2 Secondary Creep......Page 34
2.2.1 Isotropic Creep......Page 35
2.2.2 Creep of Initially Anisotropic Materials......Page 40
2.2.3 Functions of Stress and Temperature......Page 56
2.3 Primary Creep and Creep Transients......Page 60
2.3.1 Time and Strain Hardening......Page 62
2.3.2 Kinematic Hardening......Page 65
2.4 Tertiary Creep and Creep Damage......Page 72
2.4.1 Scalar-Valued Damage Variables......Page 74
2.4.2 Damage-Induced Anisotropy......Page 90
3 Examples of Constitutive Equations for Various Materials......Page 97
3.1.1 Type 316 Steel......Page 98
3.1.4 Aluminium Alloy BS 1472......Page 99
3.2 Model for Anisotropic Creep in a Multi-Pass Weld Metal......Page 104
3.2.1 Origins of Anisotropic Creep......Page 105
3.2.2 Modeling of Secondary Creep......Page 111
3.2.3 Identificatio of Material Constants......Page 112
4.1 General Remarks......Page 115
4.2.1 Governing Equations......Page 118
4.2.2 Vector-Matrix Representation......Page 120
4.2.3 Numerical Solution Techniques......Page 123
4.3.1 Classical Beam Theory......Page 134
4.3.2 Closed Form Solution......Page 136
4.3.3 Variational Formulation and the Ritz Method......Page 138
4.3.4 Examples......Page 140
4.3.6 First Order Shear Deformation Theory......Page 150
4.3.7 Example: Refine vs. Classical Beam Theory......Page 156
4.4.1 Approaches to the Analysis of Plates and Shells......Page 160
4.4.2 Examples......Page 163
A Basic Operations of Tensor Algebra......Page 179
A.1 Polar and Axial Vectors......Page 180
A.2.2 Multiplication by a Scalar......Page 181
A.2.4 Vector (Cross) Product of Two Vectors......Page 182
A.3 Bases......Page 183
A.4.1 Addition......Page 184
A.4.5 Double Inner Dot Product......Page 185
A.4.7 Cross Products of a Second Rank Tensor and a Vector......Page 186
A.4.9 Symmetric Tensors......Page 187
A.4.12 Linear Transformations of Vectors......Page 188
A.4.14 Principal Values and Directions of Symmetric Second Rank Tensors......Page 189
A.4.16 Coordinates of Second Rank Tensors......Page 190
A.4.17 Orthogonal Tensors......Page 191
B.1 Coordinate Systems......Page 193
B.2 Hamilton (Nabla) Operator......Page 194
B.3 Integral Theorems......Page 196
B.4 Scalar-Valued Functions of Vectors and Second Rank Tensors......Page 197
C.1 Definition......Page 199
C.3 Invariants for the Transverse Isotropy Group......Page 200
C.3.1 Invariants for a Single Second Rank Symmetric Tensor......Page 201
C.3.2 Invariants for a Set of Vectors and Second Rank Tensors......Page 206
C.4 Invariants for the Orthotropic Symmetry Group......Page 208
References......Page 211
Index......Page 227