Extreme Natural Events: Sustainable Solutions for Developing Countries

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book presents the challenges of developing countries to understand and manage the risks of extreme natural events. In the seventeen chapters presented, it brings together scientific communities from Ghana, India, Indonesia, Malaysia, Philippines, Sri Lanka, South Africa, and Venezuela to share their expertise in different aspects of managing extreme natural events, particularly those related to climate. It discusses how adaptation to these extreme natural events must be an integral part of national policy of the developing countries dealing with disaster mitigation and management.

Author(s): A.S. Unnikrishnan, Fredolin Tangang, Raymond J. Durrheim
Publisher: Springer
Year: 2022

Language: English
Pages: 455
City: Singapore

Foreword by Philip L. Woodworth
Introduction by Amitava Bandopadhyay
Preface
Contents
Part I Climate Extremes
1 CORDEX Southeast Asia: Providing Regional Climate Change Information for Enabling Adaptation
1.1 Introduction
1.2 Climate Information for Enabling Adaptation
1.3 Climate Change Modelling: GCM and Regional Climate Downscaling
1.4 Regional Climate Downscaling Activities in Southeast Asia
1.5 CORDEX Southeast Asia: Origin, Progress and Key Findings
1.6 SARCCIS: CORDEX-SEA Data Sharing Portal
1.7 Challenges and the Way Forward
1.8 Conclusions
References
2 Technical and Infrastructure Modality for Extreme Climate Early Warning in Indonesia
2.1 Introduction
2.2 Annual Cycle
2.3 Definition of Extreme Rainfall of the Area
2.4 Extreme Phenomena of the Area
2.4.1 ENSO Variability
2.4.2 ITCZ Convergence
2.4.3 Madden–Julian Oscillation
2.4.4 Cold Surge
2.4.5 Tropical Cyclone
2.4.6 Mesoscale Convective System
2.4.7 Vortices
2.4.8 Air Quality Extreme
2.5 Works for Extremes
2.6 Future Extremes
2.7 Institutions for Disaster in Indonesia
2.7.1 BMKG or the Agency for MeteorologyClimatology and Geophysics
2.7.2 BNPB or the National Disaster Management Authority
2.7.3 BPPT or the Agency for Assessment and Application of Technology
2.7.4 LAPAN or the Agency for Space and Aeronautics
2.7.5 Ministry for Forestry and Environment
2.7.6 Ministry for Energy and Mineral Resources
2.7.7 Ministry for Public Work and Housing
2.8 Conclusions
References
3 Challenges in Predicting Extreme Weather Events Over the South Asian Region
3.1 Introduction
3.1.1 What is Severe?
3.1.2 What Are Different Types of Severe Weather Over South Asia?
3.2 How to Predict the Severe Weather?
3.2.1 Lightning Potential Index (J/kg)
3.2.2 Lightning Flash Rate Density
3.2.3 SuperCell Composite Parameter (SCP)
3.2.4 Data Assimilation
3.3 What Are the Challenges in Observations?
3.4 What Are the Challenges in Modeling?
3.4.1 Inaccurate Initial Conditions
3.4.2 Multiscale Interactions
3.4.3 Chaos and Limit on Deterministic Predictability
3.4.4 Ensemble Forecasting System
3.4.5 Horizontal and Vertical Resolution
3.4.6 High-Performance Computing
3.4.7 AI and ML in Extreme Weather Forecasting
3.5 What is the Current Status of Severe Weather Forecasting?
3.5.1 Numerical Prediction of Severe Thunderstorms/Nor’westers
3.5.2 Lightning Threat Forecasts
3.5.3 Cloudburst Forecasts
3.5.4 A Historic Tornado of Nepal
3.5.5 Tropical Cyclone Forecasting
3.5.6 Heavy Rainfall Causing Catastrophic Floods
3.5.7 How Reliable Are Weather Forecasts?
3.5.8 What is the Projection of Extreme Weather Events in a Changing Climate?
3.6 What is the Severe Weather Forecast Demonstration Project?
3.6.1 SAARC STORM
3.6.2 Forecast Demonstration Project (FDP)—Cyclone
3.6.3 Winter Fog Experiment (WiFEX)
3.7 Summary and Discussion
References
Part II Extreme Rainfall Events and Thunderstorms
4 Statistical Characteristics of Extreme Rainfall Events Over the Indian Subcontinent
4.1 Introduction
4.1.1 Extreme Weather Events and Climate Change
4.1.2 Precipitation Extremes and Climate Change
4.1.3 Precipitation Extremes-Indian Scenario
4.2 Data and Methodology
4.2.1 The Tropical Rainfall Measuring Mission (TRMM)-Multi-satellite Precipitation Analysis (TMPA)
4.3 Methodology
4.3.1 Daily Extreme Rainfall Indices
4.3.2 GINI Index
4.3.3 Gamma Probability Distribution Function (Gamma PDF)
4.4 Results and Discussion
4.4.1 Seasonal Spatial Distribution of R95 Threshold Values, Number of Extreme Rainfall and Extreme Rainfall Contribution
4.4.2 Gamma Probability Density Function
4.4.3 GINI Index
4.4.4 Tracks of the Low-Pressure Systems
4.5 Conclusion
References
5 Complexities of Extreme Rainfall in the Philippines
5.1 Introduction
5.2 Historical Extreme Rainfall Events
5.2.1 Tropical Cyclones
5.2.2 Tropical Cyclone-Enhanced Southwest Monsoon
5.2.3 Tropical Cyclone-Enhanced Northeast Monsoon
5.2.4 Cold Surges, Vortices, and Shearlines
5.2.5 Local Thunderstorms
5.3 Challenges and Directions for Future Research
5.4 Conclusion
References
6 A Case Study of an Unexpected Extreme Rainfall Event on September 1, 2020, in Sri Lanka
6.1 Introduction
6.2 Data and Methodology
6.3 Results and Discussion
6.3.1 Synoptic Situation
6.4 Conclusions
References
7 Thermodynamic Changes in the Atmosphere Associated with Pre-monsoon Thunderstorms Over Eastern and North-Eastern India
7.1 Introduction
7.2 Study Region and Availability of In-Situ Observations
7.3 Thermodynamic Indices, Skill Scores and Rank Sum Score
7.4 Atmospheric Thermodynamics Over Eastern and North-Eastern India During Pre-monsoon Thunderstorms
7.4.1 Thermodynamic Changes Related to Pre-monsoon Thunderstorms Over Kolkata
7.4.2 Thermodynamic Changes Over Eastern and North-Eastern India (Excluding Kolkata) Related to Pre-monsoon Thunderstorms
7.5 Newly Developed Thermodynamic Indices for Nor’westers
7.6 Climate Change and Thunderstorms Activity
7.7 Summary and Conclusions
Appendix 1
Formulations of Popular Thermodynamic Indices
Appendix 2
Skill Score Analysis
Rank Sum Score (RSS)
References
8 Real-Time Detection of Tornado-Induced Ionospheric Disturbances by Stand-Alone GNSS Receiver
8.1 Introduction
8.2 Why Oklahoma?
8.3 Datasets
8.3.1 Space Weather Dataset
8.3.2 GNSS Dataset
8.3.3 Other Tropospheric Parameters
8.4 Methodology
8.4.1 GNSS-TEC Data Processing Strategy
8.4.2 GNSS-TEC Time Series Analysis
8.5 Result and Discussion
8.5.1 Space Weather Condition During Tornado Events
8.5.2 Observed Changes in Ionosphere: Induced by Tornados
8.5.3 Velocity of Ionospheric Oscillations
8.5.4 Independent Proxy from Outgoing Long-Wave Radiation (OLR)
8.5.5 Comparison with Global GNSS-TEC Anomaly Map
8.5.6 Tornado-Induced Ionospheric Disturbance: Coupling Mechanism Between Ionosphere and Troposphere
8.6 Conclusion
References
Part III Extreme Waves, Sea Level Changes and Coastal Inundation
9 Extreme Wind-Wave Characteristics in the North Indian Ocean in a Changing Climate
9.1 Introduction
9.1.1 Historical Perspective on Ocean Wave Studies Relevant for the North Indian Ocean
9.1.2 Concept of Energy Balance for Wave Modelling Studies
9.1.3 Wind-Wave Climate Studies for the Global Oceans
9.1.4 Role and Influence of Southern Ocean (SO) on Wind-Wave Climate
9.1.5 Impact of Extreme Wind-Waves on Coastal Inundation
9.2 Data and Methodology
9.2.1 Extreme Wind-Wave Analysis for the North Indian Ocean
9.2.2 Analysis of GCM Results for the North Indian Ocean
9.3 Results and Discussion
9.3.1 Recent Trends in Maximum Wind Speed and Significant Wave Heights for Indian Ocean
9.3.2 Trends in Extreme Waves Analysed Using ERA5 for the Indian Ocean
9.3.3 Extreme Waves for Different Return Periods in the Arabian Gulf
9.3.4 Tropical Cyclone Induced Extreme Waves
9.3.5 Projections and Validation of Wind Speed from GCMs in the Indian Ocean Region
9.4 Summary and Conclusions
References
10 Changes in Extreme Sea-Level in the North Indian Ocean
10.1 Introduction
10.2 Past Changes in Extreme Sea Level
10.3 Role of Tides in Extreme Sea-Level Changes
10.4 Future Projections
10.4.1 Hydrodynamical Approach
10.4.2 Statistical Projections
10.5 Mean Sea-Level Variability and Changes in the North Indian Ocean
10.6 Extreme Sea-Level Changes and Projections in the North Indian Ocean
10.6.1 Variability and Trends in Extreme Sea Level
10.6.2 Future Projections of Extreme Sea Level
10.6.3 Extreme Sea Levels in the Marginal Seas and Low-Lying Islands
10.7 Coastal Flooding
10.8 Conclusions and Future Perspectives
10.8.1 Conclusions
10.8.2 Future Perspectives
References
11 Mapping of Coastal Inundation Due to Tropical Cyclones: A Numerical Study for the Indian Coasts
11.1 Introduction
11.1.1 Brief Description of ADCIRC and SWAN
11.1.2 Computation of Storm Surges and Coastal Inundation
11.2 Model Domain and Computation of Tides
11.3 Coastal Inundation Along the East Coast of India: A Climate Change Perspective
11.3.1 Data and Methodology
11.3.2 Results and Discussions
11.4 Coastal Inundation for the West Coast of India: A Climate Change Perspective
11.4.1 Data and Methodology
11.4.2 Results and Discussions
11.5 Conclusions
References
Part IV Earthquakes and Landslides
12 Assessment of the Earthquake Risk Posed by Shale Gas Development in South Africa
12.1 Introduction
12.2 Seismotectonics of the Karoo Basin and Environs
12.3 Relevant Legislation and Regulation
12.4 Likely Impact of Fracking-Induced Ground Shaking
12.4.1 Triggering of Earthquakes by Fluid Injection
12.5 Mitigation of Impacts
12.6 Risk Assessment Methodology
12.6.1 Scenarios
12.7 Conclusions and Recommendations
References
13 Living Safely with Earthquakes in Asia
13.1 Introduction
13.2 Earthquake Hazard
13.2.1 Earthquake Hazard in Asia
13.2.2 Earthquake Hazard in India
13.3 Results and Discussion
13.4 Conclusions
References
14 The 24 June 2020 Earthquake in Southern Ghana
14.1 Introduction
14.2 Tectonic Framework
14.3 Review of Past Earthquakes
14.4 Methodology
14.5 Results and Discussion
14.6 Isoseismal Map
14.7 Conclusions
References
15 Landslides and Slope Instability in Mussoorie and Nainital Townships (Uttarakhand) in Present Climate—Change Scenario
15.1 Introduction
15.2 Study Area
15.3 Engineering Geological Conditions of Slope Forming Material
15.4 Climate Pattern
15.5 Landslide Hazard Potential
15.5.1 Land Subsidence on Lower Mall Road in Nainital—August 2018
15.6 Discussion and Conclusion
References
Part V Impact Assessment
16 Impact Assessment and Adaptation Options for Climatic Change in Paddy Cultivation: A Case Study in Ampara District, Sri Lanka
16.1 Introduction
16.2 Methodology
16.2.1 Description of the Study Area
16.3 Results and Discussion
16.3.1 Paddy Cultivation in Ampara District
16.4 Conclusion and Recommendations
References
Part VI Integrated Disaster Risk Reduction
17 Contributions to a Comprehensive Strategy Design for Disaster Risk Reduction Related to Extreme Hydroclimatic Events in Latin America and the Caribbean
17.1 Introduction
17.2 Materials and Methods
17.3 Results and Discussion
17.3.1 Comprehensive Strategy for Action
17.3.2 Actions for Disaster Risk Diagnostic and Characterization
17.3.3 Actions for Prospective Disaster Risk Management
17.3.4 Actions for Corrective Disaster Risk Management
17.3.5 Actions for Preparation and Response (Reactive Disaster Risk Management)
17.3.6 Cross-Cutting Priority Actions
17.3.7 Assessment of the Comprehensiveness of Country Commitments
17.4 Conclusions
References