Extended Finite Element and Meshfree Methods provides an overview of, and investigates, recent developments in extended finite elements with a focus on applications to material failure in statics and dynamics. This class of methods is ideally suited for applications, such as crack propagation, two-phase flow, fluid-structure-interaction, optimization and inverse analysis because they do not require any remeshing. These methods include the original extended finite element method, smoothed extended finite element method (XFEM), phantom node method, extended meshfree methods, numerical manifold method and extended isogeometric analysis.
This book also addresses their implementation and provides small MATLAB codes on each sub-topic. Also discussed are the challenges and efficient algorithms for tracking the crack path which plays an important role for complex engineering applications.
Author(s): Timon Rabczuk Jeong-Hoon Song Xiaoying Zhuang Cosmin Anitescu
Publisher: Academic Press
Year: 2019
Language: English
Pages: 629
Introduction
2. Weak forms and governing equations
3. Extended Finite Element Method
4. Phantom Node Method
5. Extended Meshfree Methods
6. Extended Isogeometric Analysis
7. Fracture in plates and shells
8. Fracture criteria and crack tracking procedures
9. Multiscale methods for fracture
10. A short overview of alternatives
11. Implementation details