Explosive pulsed power generators are devices that either convert the chemical energy stored in explosives into electrical energy or use the shock waves generated by explosives to release energy stored in ferroelectric and ferromagnetic materials. The objective of this book is to acquaint the reader with the principles of operation of explosive generators and to provide details on how to design, build, and test three types of generators: flux compression, ferroelectric and ferromagnetic generators, which are the most developed and the most near term for practical applications. Containing a considerable amount of new experimental data that has been collected by the authors, this is the first book that treats all three types of explosive pulsed power generators. In addition, there is a brief introduction to a fourth type ix explosive generator called a moving magnet generator. As practical applications for these generators evolve, students, scientists, and engineers will have access to the results of a considerable body of experience gained by almost 10 years of intense research and development by the authors.
Author(s): Larry L. Altgilbers, Jason Baird, Bruce L. Freeman, Christopher S. Lynch, Sergey I. Shkuratov
Edition: 1
Publisher: World Scientific
Year: 2010
Language: English
Pages: 597
Tags: Топливно-энергетический комплекс;Топливо и теория горения;
Contents......Page 8
Preface......Page 18
1.1 What is Pulsed Power?......Page 21
1.2 Pulsed Power Parameters......Page 24
1.3 Explosive Power Sources......Page 25
1.3.1 Flux Compression Generators......Page 26
1.3.2 Explosive Magnetohydrodynamic Generators......Page 27
1.3.3 Moving Magnet Generators......Page 28
1.3.4 Ferroelectric Generators......Page 29
1.4 Book Outline......Page 30
Bibliography......Page 31
2.2 Maxwell’s Equations......Page 33
2.3.1.1 Resistors......Page 37
2.3.1.2 Inductors......Page 38
2.3.1.4 Transformers......Page 39
2.3.1.5 Switches......Page 41
2.3.1.6 Transmission Lines......Page 44
2.3.1.7 Insulation......Page 46
2.3.2 Circuit Equations......Page 47
2.3.3 Transient Circuits......Page 50
2.4.1 Magnetic Diffusion
......Page 51
2.4.2 Magnetic Force......Page 53
2.4.3 Magnetic Pressure......Page 54
2.4.4 Electric Fields......Page 55
2.4.5 Electrical Breakdown......Page 56
2.4.5.1 Gas Breakdown......Page 57
2.4.5.2 Liquid Breakdown......Page 60
2.4.5.3 Solid Breakdown......Page 61
2.5 Summary......Page 62
Bibliography......Page 63
3.2.1 Stress and Strain......Page 65
3.2.2 Sound Velocity......Page 67
3.2.3 ShockWaves......Page 68
3.2.4 Detonation Waves......Page 72
3.2.5 Detonation Jump Equations......Page 75
3.3.1 Explosives......Page 77
3.3.1.1 Categories of Explosives......Page 79
3.3.1.2 Chemistry of Explosives......Page 80
3.3.1.3 Explosive Thermochemistry......Page 82
3.3.1.4 Chemical Kinetics......Page 86
3.3.1.5 Factors That Affect Explosives......Page 88
3.3.1.6 Explosive Power......Page 92
3.3.2 Explosive Train......Page 93
3.3.2.1 Detonators......Page 94
3.3.2.2 Fire Set and Cabling......Page 100
3.4.1 Impedance......Page 101
3.4.2 Gurney Equations......Page 103
3.4.3 Taylor Angle Approximation......Page 107
3.5 Summary......Page 108
Bibliography......Page 109
4.1 High Power Electrical Measurements......Page 111
4.1.1.1 Resistive Voltage Divider......Page 112
4.1.1.2 Capacitive Voltage Divider......Page 117
4.1.1.3 Optical Voltage Monitors......Page 118
4.1.2.1 Pure Resistive Shunt Method......Page 119
4.1.2.2 Rogowski Coil......Page 120
4.1.2.3 Pearson Current Monitor......Page 126
4.1.2.4 Current Viewing Resistor......Page 127
4.1.2.5 Cavity Current Monitor......Page 128
4.1.3 Power and Energy Measurements......Page 129
4.2.1 B-Dot Probes......Page 130
4.2.3 Current Monitor Transformer......Page 131
4.2.4.1 Dipole Antenna......Page 132
4.2.4.4 Vivaldi Antenna......Page 133
4.2.5 Thin Film Sensors......Page 134
4.3 DetonicMeasurement Techniques......Page 137
4.3.1 Time of Arrival Detectors......Page 138
4.3.2 Surface Displacement Detectors......Page 140
4.3.3.1 Piezoresistive Gages......Page 142
4.3.4 Cinematographic and Flash X-Ray Techniques......Page 143
4.3.4.2 Rotating-Mirror and Rotating-Drum Cameras......Page 144
4.3.4.3 Image Converter and Electronic Cameras......Page 145
4.3.4.4 Flash X-Ray Radiography......Page 146
4.4 Summary......Page 147
Bibliography......Page 148
5. Flux Compression Generators......Page 149
5.1 Classifications of FCGs......Page 150
5.2 Historical Perspectives......Page 152
5.3.1 General Principles......Page 154
5.3.3 Generator Impedance......Page 157
5.3.4 Example: An Idealised Generator......Page 159
5.3.5 Advantages and Disadvantages......Page 161
5.3.5.3 Pulse Shape Effects......Page 162
5.3.5.4 Powering Parallel Loads......Page 164
5.4 Specific Types of Generator......Page 165
5.4.1 Plate Generators......Page 166
5.4.2 Strip Generators......Page 167
5.4.3 Cylindrical Implosion System......Page 169
5.4.4 Coaxial Generators......Page 171
5.4.5 Disk Generators......Page 173
5.4.6 Loop Generators......Page 175
5.4.7 Helical or Spiral Generators......Page 179
5.4.9 Shock Wave Generators......Page 181
5.4.10 Summary of Generator Classes......Page 186
5.5.1 Diffusion Related Losses......Page 187
5.5.2.1 Mechanical Tolerances......Page 188
5.5.2.4 Undesired Component Motion......Page 189
5.5.3 Efficiencies......Page 190
5.6.1.1 Closing Switches......Page 192
5.6.1.2 Opening Switches......Page 193
5.6.2.1 Powering a Large Inductance......Page 196
5.6.2.2 Powering Large Resistances......Page 200
5.6.3.1 Helical-Wound Coils......Page 211
5.6.3.2 Tape-Wound Coils......Page 213
5.6.4 Generator Flux Sources (Seed Sources)......Page 214
5.6.4.1 Capacitive Seed Sources......Page 215
5.6.4.3 Booster Generators......Page 216
5.6.4.4 Permanent Magnets, FEGs and FMGs......Page 217
5.7 Summary......Page 219
Bibliography......Page 221
6. Helical Flux Compression Generators......Page 237
6.1 Basic Theoretical Treatment......Page 242
6.2 Figures of Merit......Page 244
6.3.1.1 Magnetic Diffusion......Page 247
6.3.1.2 Electrical Breakdown......Page 248
6.3.1.3 Contact Point Resistance Model......Page 249
6.3.2.2 Expansion and Fracturing......Page 251
6.3.3.2 Explosive Produced Jets......Page 255
6.3.3.3 Explosive Packing and Voids......Page 256
6.4 Seed Sources for HFCGs......Page 257
6.4.2 Batteries......Page 259
6.4.3 Permanent Magnets......Page 260
6.5 HFCGs with Simultaneous Axial Initiation......Page 262
6.6 Cascaded HFCGs......Page 264
6.7.1 Philosophy......Page 267
6.7.2 PreliminaryDesign......Page 270
6.8 Small versus Large HFCGs......Page 271
6.9 Computer Models......Page 274
6.10 Summary......Page 275
Bibliography......Page 276
7. Magnetic Materials and Circuits......Page 281
7.1.1 Types of Magnetic Materials......Page 282
7.1.2 Properties of Magnetic Materials......Page 284
7.2 Shock Compression of Ferromagnetic Materials......Page 286
7.3 Magnetic Circuits......Page 287
7.3.1 Magnetic Circuit Laws......Page 290
7.3.2 Magnetic Circuit Model for Permanent Magnets......Page 293
7.4.2 Eddy Current Loss......Page 294
Bibliography......Page 295
8.2 Explosive Driven Soft Ferromagnetic Generator Limitations......Page 297
8.3 Pressure Induced Magnetic Phase Transitions in Hard Ferromagnets......Page 300
8.3.1 Longitudinal Shock Wave Demagnetisation of Nd2Fe14B......Page 301
8.3.2 Pressure in Shock Compressed Nd2Fe14B Ferromagnets......Page 306
8.3.3 High Voltage and High Current Generation by Longitudinally Shock Demagnetising Nd2Fe14B.......Page 308
8.4 Transverse Shock Wave Demagnetisation of Nd2Fe14B Ferromagnets......Page 310
8.4.1 Static Magnetic Flux Initially Stored in Nd2Fe14B Ferromagnets......Page 312
8.4.2 Transverse Shock Wave Demagnetisation of Nd2Fe14B Ferromagnets......Page 313
8.5.1 The Physical Principle of Seed Current Generation......Page 315
8.5.2 Magnetic Flux Changes in Transverse FMGs......Page 317
8.5.3 Currents Produced by Transverse FMGs......Page 320
8.6.1 Analytical Equations......Page 324
8.6.2 Current Generated by Longitudinal FMGs......Page 326
8.6.3 Current Generated by Transverse FMGs......Page 327
8.6.4 Summary......Page 328
8.7.1 High Voltage Transverse FMG Design......Page 329
8.7.2 Results and Discussion......Page 330
8.7.3 Summary......Page 335
8.8.1 Operating Principles......Page 336
8.8.2 Performance of the FMG-VIG System......Page 337
8.9 Explosive Driven FMG-FCG System......Page 339
8.9.2 FMG-FCG Performance......Page 340
8.10 Summary......Page 344
Bibliography......Page 346
9.2 Historical Perspectives......Page 351
9.3 Electromechanical Effects in Ferroelectric Materials......Page 353
9.4.1 Dielectric Constant/Permittivity......Page 359
9.4.3 Remnant Polarisation......Page 360
9.4.7 Piezoelectric Voltage Constant......Page 361
9.4.9 Acoustic Impedance......Page 362
9.5 Notation......Page 363
9.6.1 Single-Crystals......Page 365
9.6.5 Thin Films......Page 366
9.7.1 PZT Properties......Page 367
9.7.2 Important PZT Parameters......Page 371
9.7.2.1 Intrinsic Effects......Page 374
9.7.2.2 Extrinsic Effects......Page 375
9.7.2.3 PZT 95/5......Page 376
9.7.3 Fabrication of PZT......Page 378
9.7.4.1 Dopants......Page 379
9.7.4.3 Encapsulating Materials......Page 380
9.7.4.4 Shock and Electric Field Amplitudes......Page 381
9.7.5 Optimisation of PZT for FEGs......Page 382
9.7.6 PZT Failure Modes......Page 383
9.8 Chapter Summary......Page 384
9.9 Suggested Reading on Ferromagnetic Materials......Page 385
Bibliography......Page 386
10.1 Introduction......Page 389
10.2 Perovskite-Type ABO3 Crystal Structure......Page 390
10.3 The PhaseDiagram......Page 395
10.3.1 Cubic......Page 397
10.3.2 Tetragonal......Page 398
10.3.4 Rhombohedral, AF......Page 399
10.4 Single-Crystal Behavior......Page 400
10.4.2 Domain Walls......Page 401
10.5.1 Mechanical Work......Page 404
10.5.2 ElectricWork......Page 405
10.5.3 Combined Stress and Electric Field......Page 406
10.5.4 Orientation Effects (Orthogonal Transformations)......Page 407
10.5.5 Stress......Page 408
10.5.7 Kinetics of Variant Evolution......Page 409
10.5.8 Volume Average Single Crystal Properties......Page 412
10.6 Phases Transformations in Single Crystal......Page 414
10.6.1 Ceramic Behavior......Page 416
10.7.1 PLZT 8/65/35 (Soft Rhombohedral Ferroelectric)......Page 418
10.7.2 PLSnZT (AF-F Double Loop)......Page 421
10.7.3 PZT 95-5......Page 423
10.8 Discussion of the Rh (F) to Rh (AF) Phase Transformation and FEG Design......Page 426
Bibliography......Page 428
11.1 Early Shock Depolarisation Studies......Page 431
11.2.1 Shock Induced Stress Test Methods......Page 440
11.2.1.2 Hugoniot States and Mechanical Properties......Page 441
11.2.1.3 Shock Compression Studies......Page 442
11.2.1.4 Depoling Studies......Page 443
11.3 Early FEG Studies......Page 445
11.4 Summary......Page 449
Bibliography......Page 453
12.1 Introduction......Page 459
12.3 Electromagnetic Launcher Accelerated Flyer Plates......Page 460
12.4 Propellant Gun Accelerated Projectiles......Page 461
12.5.1 Design of Explosive Driven FEGs......Page 464
12.5.2 Electrical Breakdown Problems......Page 467
12.6 FEG Pulsed Power Generation: High Resistance Loads......Page 469
12.7 Longitudinal Shock Wave Depolarisation of Polycrystalline PZT 54/48......Page 475
12.7.1 Experimental Results......Page 476
12.8 Pulse Charging Capacitor Banks with FEGs......Page 480
12.8.1 FEG-Capacitor Bank System: Oscillatory Mode......Page 481
12.8.2 Theoretical Description of FEG-Capacitor Bank Systems......Page 485
12.8.3 FEG-Capacitor Bank Energy Transfer......Page 488
12.9 Operation of FEGs with Resistive Loads......Page 493
12.9.1 Experimental Results......Page 494
12.10.1 Single Element FEGs......Page 499
12.10.1.1 Simulation Results and Discussions......Page 504
12.10.2 Multi-Element FEG Model......Page 505
12.10.2.1 Transverse Shocked Parallel Element FEG with an RLC Load......Page 506
12.10.2.2 Transverse Shocked Series Element FEG with an Open-Circuit Load......Page 508
12.10.3 Semi-Empirical Model for PZT Breakdown......Page 509
12.11.1 General Design of a FEG-VIG Pulsed Power System......Page 510
12.11.2 FEG-VIG System Performance......Page 513
12.12.1 Ferroelectric Material and Geometry......Page 518
12.12.2 Potting Materials......Page 519
12.12.3 Shock Wave Profile......Page 520
12.13 Summary......Page 521
Bibliography......Page 522
13.1 Principles of Operation......Page 527
13.2 Moving Magnet Pulsed Power Generators......Page 530
13.3.1 Open Magnetic Circuit MMGs......Page 532
13.3.2 Closed Magnetic Circuit MMGs......Page 534
13.3.3 MMG Ferromagnetic Projectiles......Page 536
13.4.1 Experimental Systems......Page 540
13.4.2 Principles of High Current Generation......Page 542
13.4.3 High Current MMG Seed Sources......Page 544
13.5 High-Voltage Explosive-Driven MMGs......Page 550
13.5.1 High-Voltage Generation......Page 551
13.5.2 Multi-Stage High-Voltage MMGs......Page 552
13.6 Summary......Page 558
Bibliography......Page 559
14.2 Case Study 1: Piezoelectric High Voltage Generator......Page 563
14.2.1 Three Ferroelectric Element Module Voltage Tests......Page 565
14.2.2 Summary......Page 567
14.3 Case Study 2: FEG-Driven Antenna......Page 568
14.4 Case Study 3: FCG-Driven Microwave Test Bed......Page 570
14.4.2 Compact Seed Source......Page 571
14.4.3.1 Helical FCG Overview......Page 573
14.4.3.2 Fabrication Procedure......Page 575
14.4.3.3 Dual-Stage Helical FCG Design......Page 580
14.4.4 Power Conditioning System......Page 581
14.4.5 Loads......Page 585
14.5 Case Study 4: Birdseed Program......Page 588
14.6 Summary......Page 590
Bibliography......Page 591
Index......Page 593